Skip Nav Destination
Close Modal
Search Results for
glass-matrix composites
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 738
Search Results for glass-matrix composites
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2001
Fig. 2 Unidirectional alumina-fiber/glass-matrix composite formed by slurry infiltration followed by hot pressing. (a) Light micrograph of transverse section (some porosity can be seen in this micrograph). (b) Pressure and temperature schedule used during hot pressing of this composite
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003066
EISBN: 978-1-62708-200-6
... Abstract This article describes the chemical composition, physical properties, thermal properties, mechanical properties, electrical properties, optical properties, magnetic properties, and chemical properties of glasses, glass-matrix composites, and glass-ceramics. chemical properties...
Abstract
This article describes the chemical composition, physical properties, thermal properties, mechanical properties, electrical properties, optical properties, magnetic properties, and chemical properties of glasses, glass-matrix composites, and glass-ceramics.
Image
Published: 01 January 2001
Fig. 1 Specific strength versus temperature. CFRP, carbon fiber reinforced polymers; GMC, glass-matrix composites; GCMC, glass-ceramic-matrix composites; CMC, ceramic-matrix composite; C-C, carbon-carbon composites; MMC, metal-matrix composites
More
Image
Published: 01 December 2004
Fig. 8 Residual curing agent particles in a thermoset-matrix glass fiber composite. Reflected-light phase contrast, 40× objective
More
Image
Published: 01 December 2004
Fig. 7 Microcracks in a thermoplastic-matrix glass fiber composite. Red penetration dye (DYKEM Steel Red layout fluid, Illinois Tool Works, Inc.), dark-field illumination, 25× objective
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003469
EISBN: 978-1-62708-195-5
...-matrix composite. Source: Ref 4 Fig. 4 Flat, nearly featureless fracture surface indicative of linear-elastic, very low energy absorbing stress-strain behavior (poor toughening behavior of CMCs); alumina (PRD-166) fiber reinforced glass-matrix composite. Source: Ref 5 Evidence...
Abstract
Interpretation of failures of ceramic-matrix composites, and in particular continuous fiber reinforced ceramic-matrix composites is complicated by the complex structure of the composite material. This article describes the failure characteristics and evidence of failure mechanisms of these composites, with illustrations.
Image
Published: 01 January 2001
Fig. 5 Matrix cracks related to the proportional limit stress and onset of nonlinearity of the stress-strain curve; arrows indicate matrix cracks in 0°/90° laminate Nicalon fiber reinforced CAS glass-matrix composite. Source: Ref 4
More
Image
Published: 01 January 2001
Fig. 3 Brushy fracture surface indicative of nonlinear, energy-absorbing stress-strain behavior (good toughening behavior of CMCs); 0°/90° laminate Nicalon fiber reinforced calcium aluminosilicate (CAS) glass-matrix composite. Source: Ref 4
More
Image
Published: 01 January 2001
Fig. 4 Flat, nearly featureless fracture surface indicative of linear-elastic, very low energy absorbing stress-strain behavior (poor toughening behavior of CMCs); alumina (PRD-166) fiber reinforced glass-matrix composite. Source: Ref 5
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003372
EISBN: 978-1-62708-195-5
... tough ceramic-matrix composites involved hot pressing of glass or glass ceramics ( Ref 1 , 2 ). This work was done with graphite fibers (various vendors), large-filament SiC fibers (Textron Specialty Materials), and ceramic grade (CG) Nicalon fibers (Nippon Carbon Co.). The composites were prepared...
Abstract
This article focuses on the process methods and matrix chemistries of ceramic-matrix composites. These methods include pressure-assisted densification, chemical vapor infiltration, melt infiltration, polymer infiltration and pyrolysis, and sol-gel processing. The article discusses the use of a ceramic, preceramic, or metal phase as a fluid or vapor phase reactant to form the matrix. Emphasis is placed on microstructural features that influence ultimate composite properties.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003421
EISBN: 978-1-62708-195-5
.... It is perhaps the most important technique used to produce continuous fiber reinforced glass and glass-ceramic composites ( Ref 10 , 11 , 12 , 13 , and 14 ). The slurry infiltration process involves two main stages: (1) incorporation of the reinforcing phase into a “slurry” of the unconsolidated matrix...
Abstract
Ceramic-matrix composites (CMCs) have ability to withstand high temperatures and have superior damage tolerance over monolithic ceramics. This article describes important processing techniques for CMCs: cold pressing, sintering, hot pressing, reaction-bonding, directed oxidation, in situ chemical reaction techniques, sol-gel techniques, pyrolysis, polymer infiltration, self-propagating high-temperature synthesis, and electrophoretic deposition. The advantages and disadvantages of each technique are highlighted to provide a comprehensive understanding of the achievements and challenges that remain in this area.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003449
EISBN: 978-1-62708-195-5
... the mechanisms of toughening are much the same, glass-matrix composites are not discussed here as a separate type of CMC, but are included in the general discussion of DR-CMCs and CFCCs. Discontinuously Reinforced Ceramic-Matrix Composites Discontinuously reinforced ceramic-matrix composites are a class...
Abstract
This article discusses the mechanisms for enhancing the reliability of three types of ceramic-matrix composites: discontinuously reinforced ceramic-matrix composites, continuous fiber ceramic composites, and carbon-carbon composites. It also presents examples of their mechanical and physical properties. Examples that illustrate the properties of commercially available materials are also provided.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003032
EISBN: 978-1-62708-200-6
... Table 3 Physical properties and service characteristics of thermoplastic polyester resins and resin-matrix composites Properties Aromatic copolyester PBT PET Resin 40% glass fiber-resin Resin 15–40% glass fiber-resin Resin 30–45% glass fiber-resin Heat deflection temperature...
Abstract
The design and analysis of aerospace and industrial composite components and assemblies requires a detailed knowledge of materials properties, which, in turn, depend on the manufacturing, machining, and assembly methods used. This article, through several tables and graphs, provides the mechanical properties, physical properties, and service characteristics of representative composite fiber-resin combinations, including thermoplastic matrix composites such as thermoplastic polyester resins, thermoplastic polyamide resins, and thermoplastic polysulfone resins, and thermoset matrix composites such as thermoset polyester resins, thermoset phenolic resins, thermoset epoxy resins, thermoset polyimide resins, and thermoset bismaleimide resins.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003447
EISBN: 978-1-62708-195-5
... and service characteristics of thermoplastic polyester resins and resin-matrix composites Table 3 Physical properties and service characteristics of thermoplastic polyester resins and resin-matrix composites Properties Aromatic copolyester PBT PET Resin 40% glass fiber composite Resin 15–40...
Abstract
This article discusses the materials and properties of polymer-matrix composites to characterize each generic material according to its composition and method of manufacture. It contains a table that lists the key physical, mechanical, thermal, and electrical properties, and in-service conditions of concern for resin-matrix composites. Axes definitions, symbols, and special property calculations for composite material property tests are reviewed. The article provides an overview of the performance capabilities of selected polymer-matrix composite materials such as thermoplastic-matrix composites and thermoset-matrix composites. The thermoplastic-matrix composites include thermoplastic polyester resins and fiber resin composites; thermoplastic polyamide resins and fiber-resin composites; and thermoplastic polysulfone resins and fiber-resin composites.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002465
EISBN: 978-1-62708-194-8
... used in composites Table 1 Types of materials used in composites Fiber reinforcements Inorganic Glass Boron/tungsten wire Silicon carbide Organic Aramid (Kevlar) Carbon Graphite Matrix materials Resin Thermoplastic Polyester Polyamide...
Abstract
This article describes the interaction of composition, manufacturing process, and composite properties of composites. The manufacturing process includes resin-matrix, metal-matrix, and carbon/carbon matrix processing. The article discusses various mechanical properties of composites. It explores how variations in the composition, manufacturing, shop process instructions, and loading/environmental conditions can affect the use of a composite product in a performance/service life operation.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003352
EISBN: 978-1-62708-195-5
... Abstract Reinforcing fibers are a key component of polymer-matrix composites (PMCs), ceramic-matrix composites (CMCs), and metal-matrix composites (MMCs). This article discusses the mechanical and nonmechanical properties of these composites. It presents an overview of PMC, CMC, and MMC...
Abstract
Reinforcing fibers are a key component of polymer-matrix composites (PMCs), ceramic-matrix composites (CMCs), and metal-matrix composites (MMCs). This article discusses the mechanical and nonmechanical properties of these composites. It presents an overview of PMC, CMC, and MMC reinforcing fibers. The article describes cost-considered value-in-use of the ultimate-use temperature of selected fibers in three fiber categories: metal fibers or wires, oxide ceramic fibers, and non-oxide ceramic fibers.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003471
EISBN: 978-1-62708-195-5
... thermal process shows promise for the recovery of both fibers and fillers from thermoset-matrix glass-fiber composites ( Ref 9 ). This process, shown schematically in Fig. 7 , uses a low-temperature (450 °C, or 840 °F) fluidized bed reactor to separate fibers and fillers from the resin-matrix materials...
Abstract
This article begins with a discussion on the driving forces for recycling composites. It reviews the recycling process of thermoset-matrix composites and thermoplastic-matrix composites. The recycling of thermoset-matrix composites includes regrind, chemical, energy recovery, and thermal processes. Thermoplastic-matrix composites are recycled by regrinding, compounding/blending and reprocessing. The article concludes with discussion on the properties of recycled composite fibers.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
... Abstract This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials...
Abstract
This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials for commercial applications, epoxy resins, bismaleimide resins, polyimide resins, and thermoplastic resins are used for aerospace applications. The article addresses design considerations as well as product forms and fabrication processes.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003374
EISBN: 978-1-62708-195-5
... simpler than sizings for glass fibers. Finishes are usually a matrix component applied from solvent to the fiber surface to create a layer about 0.1 μm in thickness. Because the composition is the same as the matrix, wetting and impregnation of the fiber tow is enhanced, the carbon-fiber surface...
Abstract
Fiber-matrix adhesion is a variable to be optimized in order to get the best properties and performance in composite materials. This article schematically illustrates fiber matrix interphase for composite materials. It discusses thermodynamics of interphase in terms of surface energy, contact angle, work of adhesion, solid surface energy, and wetting and wicking. The article describes the change in interphase depending on the reinforcing fiber such as glass fiber, polymeric fiber, and carbon fiber. It emphasizes fiber-matrix adhesion measurements by direct methods, indirect methods, and composite laminate tests. The effects of interphase and fiber-matrix adhesion on composite mechanical properties, such as composite on-axis properties, composite off-axis properties, and composite fracture properties, are also discussed.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009079
EISBN: 978-1-62708-177-1
... are harder to distinguish due to dye absorption. Fig. 6 Microcracks in a glass and thermoplastic fiber hybrid composite. Red penetration dye (Magnaflux Spotcheck SKL-H, Magnaflux Corp.), dark-field illumination, 25× objective Fig. 7 Microcracks in a thermoplastic-matrix glass fiber composite...
Abstract
This article describes the microcrack analysis of composite materials using bright-field illumination, polarized light, dyes, dark-field illumination, and epi-fluorescence.
1