Skip Nav Destination
Close Modal
By
Lucas W. Koester, Leonard J. Bond, Peter C. Collins, Hossein Taheri, Timothy Bigelow
Search Results for
geometric adaptive control
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 498 Search Results for
geometric adaptive control
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1989
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002175
EISBN: 978-1-62708-188-7
... Abstract This article discusses the types of adaptive control (AC) systems for metal cutting according to the AC strategies used. These include adaptive control with optimization (ACO), adaptive control with constraints (ACC), and geometric adaptive control (GAC). The article details...
Abstract
This article discusses the types of adaptive control (AC) systems for metal cutting according to the AC strategies used. These include adaptive control with optimization (ACO), adaptive control with constraints (ACC), and geometric adaptive control (GAC). The article details the milling and grinding systems based on the ACO strategy. It reviews the fundamentals of ACC systems followed by a description of a particular ACC system for a turning operation. The article also describes the basic characteristics of GAC systems and presents a particular GAC system for the turning of cylindrical parts. It examines the issues in the AC systems such as tool wear/breakage. Trends in the AC systems such as variable-gain ACC systems and integration of adaptive control into CAD/CAM/CIM systems are also discussed.
Image
Published: 01 January 1989
Fig. 14 Histogram plots of surface roughness with (a) conventional (nonadaptive) control and (b) geometric adaptive control. Source: Ref 14
More
Image
Published: 01 January 1989
Fig. 13 Histogram plots of diameter dimensional accuracy with (a) conventional (nonadaptive) control and (b) geometric adaptive control. Source: Ref 14
More
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.9781627081887
EISBN: 978-1-62708-188-7
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0005701
EISBN: 978-1-62708-188-7
... spniy deposition FMS flexible manufacturing system AC adaptive control CVD chemical vapor deposition ft foot ACC adaptive control with constraints CVN Charpy V-notch (impact test or GAC - geometric adaptive control ACI Alloy Casting Institute gal. gallon ACO adaptive control with optimization specimen...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002174
EISBN: 978-1-62708-188-7
... for programming the tools with the aid of the automatically programmed tool language. It also explains point-to-point and continuous-path or contouring of NC systems and the adaptive systems used for NC. adaptive systems computer numerical control direct numerical control machine tools numerical control...
Abstract
This article discusses the evolution of computer numerical control and direct numerical control for machine tools. It describes the fundamentals and advantages of numerical control (NC) systems. The article reviews the manual or computer assisted off-line programming methods for programming the tools with the aid of the automatically programmed tool language. It also explains point-to-point and continuous-path or contouring of NC systems and the adaptive systems used for NC.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006967
EISBN: 978-1-62708-439-0
... are not geometric. These controls work well for final part verification because they define clear pass/fail criteria for the specified surfaces. However, they reduce the result of a complex feature evaluation to a single numeric value, which does not provide sufficient information to identify the root causes...
Abstract
As additive manufacturing (AM) gains maturity as a manufacturing technique for production in many industrial sectors, inspection as a tool for quality control gains importance. This article is focused on the field of dimensional metrology, which is typically concerned with the verification of size, location, form, and surface topography of geometric features. This is split into two categories: geometric (size, location, form) and surface measurement (topography). The article also focuses on applicable inspection technologies, and it discusses the context within digital thread manufacturing. A case study on the Digital Inspection Requirements Enhancing Coverage and Traceability (DIRECT) is also presented.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006981
EISBN: 978-1-62708-439-0
... for material development, process improvement, machine calibration, product quality control and qualification, and so on. In the details of these activities, an extensive range of overlapping data needs to exist that may benefit from the sharing of the data. Design data, machine data, as well as measurements...
Abstract
This article surveys common additive manufacturing (AM) data-acquisition methods, covering preprocess materials characterization in the lab, machine calibration in the field, in-process monitoring during a build, and the postprocess part inspections and tests. The focus is to identify acquisition-related metadata for AM data sets to improve data usability and reusability. Also included in the article are exemplar metadata definitions for a data set acquired from light-scattering-based particle size analysis.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002176
EISBN: 978-1-62708-188-7
... in its software. An example of this is adaptive control machining (see the article “Adaptive Control” in this Volume). In addition to the applications involving a direct computer process interface for the purpose of process monitoring and control, CAM also includes indirect applications in which...
Abstract
This article describes the basic functions that should be included when considering the relationship of computer-aided design (CAD)/computer-aided manufacturing (CAM) and machining. These include design, analysis, drafting, process planning, part programming, program verification, part machining, and inspection. The article provides information on hardware, data base, interfaces, and benefits of integrating machining with the CAD/CAM system of a manufacturing plant. It also provides an overview of direct, computer and, distributed numerical control, which are devoid of a number of problems inherent in conventional numerical control.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006978
EISBN: 978-1-62708-439-0
... conditions and in situ inspection of the part itself as a method of nondestructive evaluation (NDE). Monitoring data can provide crucial information that can be used to control specified process parameters to ensure part quality ( Ref 1 ). This use case has arisen due to size or geometrical limitations...
Abstract
In situ process monitoring includes any technologies that monitor or inspect during an additive manufacturing (AM) process. This article presents the types, process considerations, and challenges of in situ monitoring technologies that can be implemented during an AM process. The types include system health monitoring, melt pool monitoring, and layer monitoring. The article discusses data analysis, and provides an overview of the integration of sensors into AM machines.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006950
EISBN: 978-1-62708-439-0
... requires understanding and controlling the underlying mechanisms, such as rapid heating and cooling, process-induced distortion, nonequilibrium solidification, solid-state phase transformations, and melt pool dynamics. Moreover, due to the relative unpredictability of AM material properties, many...
Abstract
Additive manufacturing (AM) provides exceptional design flexibility, enabling the manufacture of parts with shapes and functions not viable with traditional manufacturing processes. The two paradigms aiming to leverage computational methods to design AM parts imbuing the design-for-additive-manufacturing (DFAM) principles are design optimization (DO) and simulation-driven design (SDD). In line with the adoption of AM processes by industry and extensive research efforts in the research community, this article focuses on powder-bed fusion for metal AM and material extrusion for polymer AM. It includes detailed sections on SDD and DO as well as three case studies on the adoption of SDD, DO, and artificial-intelligence-based DFAM in real-life engineering applications, highlighting the benefits of these methods for the wider adoption of AM in the manufacturing industry.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005553
EISBN: 978-1-62708-174-0
... activities that attempt to extend the commercial, welding process controllers, namely, adaptive control, intelligent control, multivariable control, and distributed, hierarchical control. adaptive control arc sensing arc welding closed-loop feedback control distributed control hierarchical control...
Abstract
This article provides an overview of the methods used to control aspects of the arc welding process and research associated with the development of closed-loop feedback control of the process. Successful implementation of a closed-loop feedback control system requires sensing, modeling, and control. The article describes the commonly applied sensing techniques for arc welding control: arc sensing and nonimaging and imaging optics. It reviews the physics-based, empirically-derived, and neural network models for arc welding control. The article also discusses the research and development activities that attempt to extend the commercial, welding process controllers, namely, adaptive control, intelligent control, multivariable control, and distributed, hierarchical control.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005114
EISBN: 978-1-62708-186-3
... to control alignment. Many factors must be considered and controlled in order to satisfy this objective: Dimensional specifications and limits Allowances for cylindrical fits Material types related to the various die-set components Geometrical deviations that may be anticipated...
Abstract
This article briefly describes the nomenclature, alignment and geometrical considerations, and functional and application requirements of a die set. The die set consists of the shank, guide posts, guide bushings, the punch, and die holders. The article illustrates plate flatness and parallelism in the die set. The testing for abrasion, seizure, and endurance in the die set are discussed briefly. The article concludes with information on die-set recommendations.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006465
EISBN: 978-1-62708-190-0
... development. This need is emphasized in ASTM 52910 and is required to ensure that inspection and quality control measures are achievable on a part-by-part basis ( Ref 27 ). Ultrasonic techniques have some capabilities for determination of the geometric accuracy of imbedded structures and features...
Abstract
Additive manufacturing (AM) is the process of joining materials to make parts from three-dimensional (3D) model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies. This article discusses various defects in AM components, such as porosity, inclusions, cracking, and residual stress, that can be avoided by using vendor recommended process parameters and approved materials. It describes the development of process-structure-property-performance modeling. The article explains the practical considerations in nondestructive evaluation for additively manufactured metallic parts. It also examines nondestructive testing (NDT) inspection and characterization methods for each of the manufacturing stages in their natural order. The article provides information on various inspection techniques for completed AM manufactured parts. The various electromagnetic and eddy current techniques that can be used to detect changes to nearsurface geometric anomalies or other defects are also discussed. These include ultrasonic techniques, radiographic techniques, and neutron imaging.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006562
EISBN: 978-1-62708-290-7
.... With the controlled structures, the lattices are expected to provide customized biological, mechanical, and geometrical requirements for in vivo tissue engineering. Fig. 3 Fine calcium-phosphate lattice structures fabricated using fused deposition of ceramics (FDC): (a) lattices with even spacing, (b...
Abstract
This article is a review of the material extrusion-based ceramic additive manufacturing (MECAM) processes. The discussion begins with details of extrusion with filament and paste, covering the most popular variants of paste extrusion-based MECAM techniques that can be differentiated based on paste type and the method of shape retention of the deposited layer: extrusion freeforming, robocasting ceramic on-demand extrusion, and freeze-form extrusion fabrication. The article then focuses on post-processing considerations and the mechanical properties of sintered ceramic parts. It concludes with information on innovation opportunities in ceramic additive manufacturing, such as incorporating UV-curing and gelation in the process and producing geometrically complex structures from shapeable green bodies.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009153
EISBN: 978-1-62708-186-3
..., recent developments show that the geometrical accuracy can be improved by using adapted multistage forming strategies ( Ref 17 ) or process combinations with stretch forming ( Ref 18 ), as discussed in section, “Hybrid Process Variations,” in the article. Multistage Forming Strategies...
Abstract
This article provides an overview of the incremental sheet forming (ISF) process and discusses the process variations of ISF. These variations include single-point incremental forming, two-point incremental forming, and kinematic incremental sheet forming. The article discusses the machines and equipment used in the process and describes the process parameters, process mechanics, and process limits. It illustrates multistage forming strategies and summarizes difficulties that exist with regard to the finite-element process simulation of ISF process. The article also describes hybrid process variations, such as stretch forming and laser-assisted ISF.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003361
EISBN: 978-1-62708-195-5
...-controlled braiding in a table. The article lists the applications of braided fabrics and composites. It discusses the formation, structure, and properties of two-dimensional braid composites and three-dimensional braid composites: the damage tolerance and the impact damage limitation. braided...
Abstract
Braided structures are unique in their high level of conformability, torsional stability, and damage resistance. This article describes the classifications of braiding such as two-dimensional braiding and three-dimensional braiding. It presents the governing equations for computer-controlled braiding in a table. The article lists the applications of braided fabrics and composites. It discusses the formation, structure, and properties of two-dimensional braid composites and three-dimensional braid composites: the damage tolerance and the impact damage limitation.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007022
EISBN: 978-1-62708-439-0
... DED systems may employ adaptive and feedforward control methods to ensure accuracy, stability, robustness, and optimal processing time. The two variants of the DED processes, powder-based and wire-based, are sensitive to the deposition parameters and differ in their sensitivity levels...
Abstract
The qualification of additive manufacturing (AM) processes and the certification of AM parts is recognized as a significant impediment to the rapid, low-cost deployment of AM manufacturing. The challenges are multifaceted; however, it is an attempt to apply conventional qualification approaches to an inherently different process that has caused the most difficulty. This article examines the conventional qualification methodology and explores how the unique characteristics of AM pose a set of qualification challenges. The extant approach to the qualification of AM processes is described, followed by a discussion on a possible future state.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003214
EISBN: 978-1-62708-199-3
... is to achieve geometrically precise components or surfaces of controlled texture or surface finish. Honing Honing is a low-velocity abrading process that uses bonded abrasive sticks to remove stock from metallic and nonmetallic surfaces. As one of the last operations performed on the surface of a part...
Abstract
Finishing refers to a wide variety of processes that generally involve material removal in one form or another to generate surfaces with specific geometries, tolerances, and functional or decorative characteristics. This article discusses four major finishing methods, namely, abrasive machining, electropolishing, mass finishing, and shot peening. In each case, it describes subtypes, process variations, and the associated equipment.
1