Skip Nav Destination
Close Modal
Search Results for
gear-driven machines
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 70 Search Results for
gear-driven machines
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001232
EISBN: 978-1-62708-170-2
... performance can often be related to improvements in abrasive finishing processes and their ability to achieve closer tolerances. For example, transmission efficiency is improved when gears roll against each other with less sliding. This is made possible by grinding the gear to closer tolerances. Efficiency of...
Abstract
Abrasive finishing is a method where a large number of multipoint or random cutting edges are coupled with abrasive grains as a bond or matrix material for effective removal of material at smaller chip sizes. This article provides a broad overview of the various categories of abrasive products and materials, abrasive finishing processes, and the mechanisms of delivering the abrasives to the grinding or machining zone. Abrasive finishing processes, such as grinding, honing, superfinishing, microgrinding, polishing, buffing, and lapping, are discussed. The article presents a brief discussion on abrasive jet machining and ultrasonic machining. It concludes with a discussion on the four categories of factors that affect the abrasive finishing or machining: machine tool, work material, wheel selection, and operational.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003982
EISBN: 978-1-62708-185-6
... station the center is trimmed out. The part is then transferred to a ring rolling machine where the part is rolled into a ring gear. Due to the automated nature of the operation, only one operator is required to supervise the operation of the line. His time is spent performing part quality checks and...
Abstract
Ring rolling is a process for creating seamless ring shaped components using specialized equipment and forming processes. This article provides information on the applications of ring rolling. It discusses the types of machines used for ring rolling, namely, vertical rolling machines, radial-axial horizontal rolling machines, four-mandrel mechanical table mills, three-mandrel table mills, and automatic radial-axial multiple-mandrel ring mills. The article provides a discussion on the process control technology and ancillary operations of ring rolling. It describes the methods of producing ring blanks and the various types of blanking and rolling tools used in ring rolling process. The article concludes with a discussion on rolled ring tolerances and machining allowances.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003973
EISBN: 978-1-62708-185-6
... concentric forgings such as wheels and gears or coining applications in which little metal movement, but high forces, are required. All mechanical presses employ flywheel energy, which is transferred to the workpiece by a network of gears, cranks, eccentrics, or levers. Driven by an electric...
Abstract
Hammers and high-energy-rate forging machines are classified as energy-restricted machines as they deform the workpiece by the kinetic energy of the hammer ram. This article provides information on gravity-drop hammers, power-drop hammers, die forger hammers, counterblow hammers, and computer-controlled hammers. It describes the three basic designs of high-energy-rate forging (HERF) machines: the ram and inner frame, two-ram, and controlled energy flow. The article reviews forging mechanical presses, hydraulic presses, drive presses, screw presses, and multiple-ram presses.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
... primarily due to the limited supply of iron. Early mills employed flat rolls for making sheet and plate, and until the middle of the 18th century, these mills were driven by water wheels. During the Industrial Revolution at the end of the 18th century, processes were devised for making iron and steel in...
Abstract
Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and surface-rolling machines. The article outlines the significant characteristics of pressing-type machines: load and energy characteristics, time-related characteristics, and accuracy characteristics. It summarizes different specialized processes such as advanced roll-forming methods, equal-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003974
EISBN: 978-1-62708-185-6
... under off-center stiffness. The design principle of the wedge-type press is shown in Fig. 10 in the article “Hammers and Presses for Forging” in this Volume. In this press, the load acting on the ram is supported by the wedge, which is driven by a two-point crank mechanism. Assuming the total...
Abstract
This article discusses the significant factors in the selection of forging equipment for a particular process. It describes the characteristics of forging hydraulic presses, mechanical presses, screw presses, and hammers. The article discusses the significant characteristics of these machines that comprise all machine design and performance data, which are pertinent to the economic use of the machines, including the characteristics for load and energy, time-related characteristics, and characteristics for accuracy.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001230
EISBN: 978-1-62708-170-2
... component fabrication department. A forged shaft may be cut, machined, or otherwise finished before it becomes an industrial component for use in an assembly process. After heat treatment, bearing or gear components may be ground to desired tolerances and surface quality before they are assembled into...
Abstract
This article focuses on the various technology drivers for finishing methods, namely, tolerance, consistency, surface quality, and productivity. Every finishing method may be viewed as a manufacturing system consisting of four input categories: machine tool, processing tool, work material, and operational factors. The article provides a classification of finishing as a surface generation process and addresses the characteristics of the generated surfaces and the methods used to measure them. It describes the thermomechanical interactions occurring between the processing tool and the work material in the presence of machine tool and operational factors.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003183
EISBN: 978-1-62708-199-3
... such as wheels and gears or for coining applications where little metal movement but high die forces are required. The practical use of these machines has been limited and is expected to remain so. Parts that can be forged in high-energy-rate forging machines also can be forged in counterblow hammers...
Abstract
Forging machines use a wide variety of hammers, presses, and dies to produce products with the desired shape, size, and geometry. This article discusses the major types of hammers (gravity-drop, power-drop, high speed, and open-die forging), and presses (mechanical, hydraulic, screw-type, and multiple-ram). It further discusses the technologies used in the design of dies, terminology, and materials selection for dies for the most common hot-forging processes, particularly those using vertical presses, hammers, and horizontal forging machines. A brief section is included on computer-aided design in the forging industry. Additionally, the article reviews specific characteristics, process limitations, advantages, and disadvantages of the most common forging processes, namely hot upset forging, roll forging, radial forging, rotary forging, isothermal and hot-die forging, precision forging, and cold forging.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003981
EISBN: 978-1-62708-185-6
... both types, the driving motor is mounted at the top of the main housing. The motor drives a large flywheel by means of V-belts. In turn, the flywheel drives the roll shafts, to which the roll dies are attached, through a system of gears. Fig. 2 Modern roll forging machine with outboard housing...
Abstract
Roll forging is a process for simultaneously reducing the cross-sectional area and changing the shape of heated bars, billets, or plates. This article provides an overview of the process capabilities, production techniques, machines and machine size selection considerations, and types of roll dies and auxiliary tools for the roll forging. It concludes with information on the production examples of roll forging.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003980
EISBN: 978-1-62708-185-6
... produced from a bar by combined upsetting and piercing than from machining of tubing, as in the following example. Double upsetting and piercing can often be used to produce complicated shapes, such as the cluster gear discussed in the following example. Depending on the shape of the upset, a recess...
Abstract
This article discusses the operation of upset forging machines and selection of the machine size. It describes several types of upsetter heading tools and their materials. The article reviews the cold shearing and hot shearing methods for preparing blanks for hot upset forging. It deals with various upsetting processes: offset upsetting, double-end upsetting, upsetting with sliding dies, upsetting pipe and tubing, and electric upsetting. The article also provides information on hot forging and cold forging.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003039
EISBN: 978-1-62708-200-6
... is still performed using the mechanical gear-driven machines that evolved during the late 1950s. These machines will continue to be used because of their low cost. Polar winders with only two axes of rotation (mandrel and winding arm) still produce rocket motor cases and spherical pressure vessels in...
Abstract
Filament winding is a process that allows the precise lay-down of continuous reinforcement in predescribed patterns at a high rate of speed. This article discusses the filament winding process and includes a comparison to other compacting and curing processes. The article describes design factors, and techniques to produce aerodynamic surfaces, improve surface smoothness, and avoid slipping and bridging of filament. The article discusses tooling and the equipment used in the filament winding process, namely, mandrel design, winding machines, tensioners, and ovens.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003990
EISBN: 978-1-62708-185-6
... asymmetric pieces. In rotating-die machines, the upper, or tilted, die has rotational and translational motion, while the lower die has only rotational motion ( Fig. 3a ). Depending on the specific machine, both dies can be independently driven or only the lower die is power driven while the upper die (the...
Abstract
Radial forging is a hot- or cold-forming process that uses two or more radially moving anvils or dies to produce solid or tubular components with constant or varying cross sections along their lengths. This article focuses on the workpiece configuration, workpiece materials, machines, dies, advantages, and limitations of radial forging. It concludes with a discussion on the applications of radial forging.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003984
EISBN: 978-1-62708-185-6
... 17,600 12 1350 160 850 33.5 750 29.5 340 13.4 150 5.9 18 59 15 33,000 16 1800 120 Source: Equipment literature of SMS Meer GmbH In this compact design, four eccentric shafts in housings mounted on an octagonal frame are driven by a synchronizing gear, integrated into the...
Abstract
Radial forging is a process performed with four dies arranged in one plane that can act on a piece simultaneously. This article explains the types of radial forgings and describes the advantages and disadvantages of radial forging over open-die cogging/forging. The article discusses the parameters involved in product shape control. It also provides examples that illustrate the versatility and capabilities of the radial forge machine.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003177
EISBN: 978-1-62708-199-3
.... Rocker arm drives apply crank or eccentric motion to a rocker arm connected to the press slide. In this mechanism, the linkage is driven by an eccentric gear and a connecting rod. The rocker arm drive is a variation of the knuckle lever drive. However, a press with rocker arm drive is not limited to...
Abstract
This article describes the presses that are mechanically or hydraulically powered and used for producing sheet, strip, and plate from sheet metal. It also presents the JIC standards for presses, compares the presses based on power source, details the selection criteria and provides information on the various drive systems and the auxiliary equipment. It describes the selection of die materials and lubricants for sheet metal forming and provides information on the lubrication mechanisms and selection with a list of lubricant types for forming of specific sheet materials of ferrous or nonferrous metals. The article reviews the various types of forming processes such as blanking, piercing, fine-edge blanking, press bending, press forming, forming by multiple-slide machines, deep drawing, stretch forming, spinning, rubber-pad forming, three-roll forming, contour roll forming, drop hammer forming, explosive forming, electromagnetic forming, and superplastic forming.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003978
EISBN: 978-1-62708-185-6
... forgings are machined into gears, pulleys, and similar components of machinery. Spindle, pinion gear, and rotor forgings ( Examples 3 and 4 ). These forgings are for shaftlike parts and have their major or functional diameters either in the center or at one end, with one or more smaller diameters...
Abstract
Open-die forging can be distinguished from most other types of deformation processes in that it provides discontinuous material flow as opposed to continuous flow. This article describes the equipment and auxiliary tools used in open-die forging. It discusses the production and practice of open-die forging, with some practical examples. The article illustrates macrosegregation in a large steel ingot and lists the forgeable alloys. It reviews the physical and mathematical models used in deformation modeling. The article explains the contour forging and roll planishing process. It inform that to ensure that forgings can be machined to correct final measurements, it is necessary to establish allowances, tolerances, and specifications for flatness and concentricity. The article also tabulates the allowances and tolerances for as-forged shafts and bars.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005252
EISBN: 978-1-62708-187-0
... a problem, because it is driven off when the sand is heated to the minimum temperature of 120 °C (250 °F) before coating. Breakage of molds or cores during molding reflects low strength. This can be caused by the use of a finer sand screen distribution without a proportionate increase in resin...
Abstract
Shell molding is used for making production quantities of castings that range in weight from a few ounces to approximately 180 kg (400 lb), in both ferrous and nonferrous metals. This article lists the limitations or disadvantages of shell mold casting. It describes the two methods for preparation of resin-sand mixture for shell molding, namely, mixing resin and sand according to conventional dry mixing techniques, and coating the sand with resin. Shaping of shell molds and cores from resin sand mixtures is accomplished in machines. The article discusses the major steps in producing a mold or core and describes the problems most frequently encountered in shell-mold casting. The problems include mold cracking, soft molds, low hot tensile strength of molds, peelback, and mold shift. The article concludes with information on examples that provide some relative cost comparisons between shell molding and green sand molding.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003018
EISBN: 978-1-62708-200-6
... prevention of sagging, distortion, and shifting, once the sheet has been heated. Depending on the size and sophistication of the machine, clamp frames may be pneumatically actuated or gear-driven or they may be part of a fully automated moving-belt system. Most continuous-web thermoforming machines use a...
Abstract
Thermoforming is a manufacturing process in which thermoplastic sheets are heated, softened, clamped onto a mold, and made to conform to the shape of the mold or forming tool. It is ideally suited to large-volume runs of small items. This article focuses on major phases of thermoforming, namely, sheet transportation, heating, forming/cooling, and trimming, and different thermoforming techniques: basic female forming; basic male forming; matched-mold thermoforming; plug-assist thermoforming; pressure bubble plug-assist vacuum thermoforming; vacuum snapback thermoforming; air-slip thermoforming; and trapped-sheet, contact heat, and pressure thermoforming. It concludes with a discussion on machines and the economic concerns of thermoforming.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003991
EISBN: 978-1-62708-185-6
... impression of the die. The shapes generally produced include a variety of enlargements of the shank or multiple enlargements of the shank and reentrant angle configurations. Transmission cluster gears, pinion blanks, shell bodies, and many other shaped parts are adapted to production by the upset machine...
Abstract
This article focuses on the forging behavior and practices of carbon and alloy steels. It presents general guidelines for forging in terms of practices, steel selection, forgeability and mechanical properties, heat treatments of steel forgings, die design features, and machining. The article discusses the effect of forging on final component properties and presents special considerations for the design of hot upset forgings.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
... levels of manufacturing productivity and economy previously unobtainable in the machining of cast irons. In one application, milling of gray cast iron gear case housing components for oil pumps, overall cycle time was reduced by half, tool life was increased from 1 to 6 parts per edge, and average...
Abstract
Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications and the parameters affecting wear of ceramics, namely, hardness, thermal conductivity, fracture toughness, and corrosion resistance. The next part of the article addresses temperature-resistant applications of advanced ceramics. Specific applications of ceramic materials addressed include cutting tools, pump and valve components, rolling elements and bearings, paper and wire manufacturing, biomedical implants, heat exchangers, adiabatic diesel engines, advanced gas turbines, and aerospace applications.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... and then finished by polishing with, progressively, No. 80 and No. 120 (and possibly No. 150) grit on a setup wheel driven by a portable machine. The traversing of this wheel should be kept in line with the run of the bead so that its cut lines are kept parallel with those of the original machine...
Abstract
Passivation; pickling, that is, acid descaling; electropolishing; and mechanical cleaning are important surface treatments for the successful performance of stainless steel used for piping, pressure vessels, tanks, and machined parts in a wide variety of applications. This article provides an overview of the various types of stainless steels and describes the commonly used cleaning methods, namely, alkaline cleaning, emulsion cleaning, solvent cleaning, vapor degreasing, ultrasonic cleaning, and acid cleaning. Finishing operations of stainless steels, such as grinding, polishing, and buffing, are reviewed. The article also explains the procedures of electrocleaning, electropolishing, electroplating, painting, surface blackening, coloring, terne coatings, and thermal spraying. It includes useful information on the surface modification of stainless steels, namely, ion implantation and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003207
EISBN: 978-1-62708-199-3
... normally gas-tight or liquid-tight. Two rotating, circular electrodes (electrode wheels), or one circular and one bar-type electrode, are used for transmitting the current to the work metal. When two electrode wheels are used, one or both wheels are driven either by means of a gear-driven shaft or by a...
Abstract
This article presents a detailed account of the welding parameters, equipment needed, applications, advantages, limitations, and the process variables affecting various types of resistance welding operations, namely, resistance spot welding, resistance seam welding, resistance projection welding, and flash welding.