1-20 of 163 Search Results for

gear tooth

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003327
EISBN: 978-1-62708-176-4
...Abstract Abstract Mechanical tests are performed to evaluate the durability of gears under load. Gear tooth failures occur in two distinct regions, namely, the tooth flank and the root fillet. This article describes the common failure modes such as scoring, wear, and pitting, on tooth flanks...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
...Abstract Abstract This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006354
EISBN: 978-1-62708-192-4
...Abstract Abstract This article is concerned with gear tooth failures influenced by friction, lubrication, and wear, and especially those failure modes that occur in wind-turbine components. It provides a detailed discussion on wear (including adhesion, abrasion, polishing, fretting...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001815
EISBN: 978-1-62708-180-1
...Abstract Abstract Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This article reviews the major types of gears and the basic principles of gear-tooth contact. It discusses...
Book Chapter

Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002153
EISBN: 978-1-62708-188-7
... of bore size, bore shape, and stock removal. It illustrates the uses of air, ring, expanding, plug, and bar gages for automatic size control in power stroking of honing tools. The article provides a short description of various honing processes, such as external honing, gear tooth honing, plateau honing...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005867
EISBN: 978-1-62708-167-2
... are greatly affected by density. The results of induction hardening and process recipe are greatly affected by density of P/M component and alloying techniques. Power requirements for induction hardening of gear teeth Table 2 Power requirements for induction hardening of gear teeth Tooth...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002375
EISBN: 978-1-62708-193-1
... of frequency) include fatigue, impact fracture, wear, and stress rupture ( Table 1 ). The leading causes of failure appear to be tooth-bending fatigue, tooth-bending impact, and abrasive tooth wear. Failure modes of gears Table 1 Failure modes of gears Failure mode Type of failure Fatigue...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006114
EISBN: 978-1-62708-175-7
.... Material utilization is very low. Machined gear teeth have an unfavorable grain flow pattern with flow lines intersecting the gear tooth profile. In comparison to the traditional gear manufacture process, the PM process offers several advantages, particularly the elimination of machining and scrap...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002145
EISBN: 978-1-62708-188-7
... on transferring the profile from a templet. This method is used in the shaperlike cutting of large tooth forms and in cutting bevel gear teeth on a bevel gear planer. In all these processes, the workpiece is held stationary until a tooth is finished; the piece is then indexed for successive teeth...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005842
EISBN: 978-1-62708-167-2
...Abstract Abstract This article focuses on the frequently encountered causes of induction coil failures and typical failure modes in fabrication of hardening inductors, tooth-by-tooth gear-hardening inductors, clamshell inductors, contactless inductors, split-return inductors, butterfly...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005987
EISBN: 978-1-62708-168-9
... 0.040–0.060 2 1.78–2.54 0.070–0.100 1 2.29–3.30 0.090–0.130 Source: Ref 3 Variations in residual stress measured at tooth foot surface of carburized and induction-hardened gears for JIS SCr 420 steel, carburized in continuous gas carburizing furnace and tempered at 160 °C (320 °F...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005952
EISBN: 978-1-62708-168-9
... in heat treatment from heat to heat. These engineering needs relate primarily to properties of the surface and immediate subsurface zones of the gear tooth. Mechanical properties at the radial centerline of the tooth are of little concern because stresses are low, resembling those at the neutral axis...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002401
EISBN: 978-1-62708-193-1
... of deformation, the width of the resulting contact bands, and the overall contact stress field. As a contacting gear tooth moves up the profile of the loaded tooth, a sliding-rolling action takes place at the profile interface. At the pitch line, tractive forces are negligible and loading conditions resemble...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.9781627081672
EISBN: 978-1-62708-167-2
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005870
EISBN: 978-1-62708-167-2
... fatigue limit loads. Source: Ref 49 Fig. 55 Factors affecting contact fatigue strength of gear tooth flank surface. Source: Ref 50 Fig. 50 Retained austenite profiles below the surface of the tooth root. VC, vacuum carburizing; DSP, double shot peening; CIH, contour induction...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005795
EISBN: 978-1-62708-165-8
... of Materials Evaluation and Engineering, Inc. Fig. 18 Induction-hardened gear tooth polished with silicon carbide abrasive paper and etched with 10% nital. Courtesy of Materials Evaluation and Engineering, Inc. Fig. 2 Comparison of case-depth measurements on a sample of 8620 steel with core...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006656
EISBN: 978-1-62708-213-6
... diffraction two-dimensional patterns for (a) good gear tooth and (b) bad gear tooth Fig. 19 Two-dimensional diffraction patterns of polypropylene films (a) as-cast, (b) heat set at 120 °C (248 °F) for 10 s, and (c) heat set at 120 °C for 10 s and then uniaxially stretched 6 x its original length...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005533
EISBN: 978-1-62708-197-9
... various hardness patterns that were obtained on the same carbon steel shaft with variations in heat time, frequency, and power density. The right side of Figure 10 shows a similar effect when surface hardening a spur gear. As a rule, when it is necessary to harden only the gear tooth tips, a higher...
Book Chapter

Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006358
EISBN: 978-1-62708-192-4
... with the pitch circle, there is pure or nearly pure rolling (depending on the accuracy of gear alignment or lateral vibration). Past this point, slip again occurs between tooth surfaces; it reaches its second maximum just at the point where the surfaces separate. Slip can result in scuffing or adhesive wear...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002400
EISBN: 978-1-62708-193-1
... evaluation of carburized steels. An example of component testing is the bending fatigue testing of single teeth in gears ( Ref 34 ). Gears are fabricated, carburized, and mounted in a fixture so that one tooth at a time is subjected to cyclic loading. Recently, identically carburized specimens of the same...