Skip Nav Destination
Close Modal
Search Results for
gear tooth
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 163 Search Results for
gear tooth
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003327
EISBN: 978-1-62708-176-4
...Abstract Abstract Mechanical tests are performed to evaluate the durability of gears under load. Gear tooth failures occur in two distinct regions, namely, the tooth flank and the root fillet. This article describes the common failure modes such as scoring, wear, and pitting, on tooth flanks...
Abstract
Mechanical tests are performed to evaluate the durability of gears under load. Gear tooth failures occur in two distinct regions, namely, the tooth flank and the root fillet. This article describes the common failure modes such as scoring, wear, and pitting, on tooth flanks. Failures in root fillets are primarily due to bending fatigue but can be precipitated by sudden overloading (impact). The article presents contact stress computations for gear tooth flank and bending stress computations for root fillets. Specimen characterization is a critical part of any fatigue test program because it enables meaningful interpretation of the results. The article describes four areas of the characterizations: dimensional, surface finish/texture, metallurgical, and residual stress. The rolling contact fatigue test, single-tooth fatigue test, single-tooth single-overload test, and single-tooth impact test are some of the gear action simulating tests discussed in the article.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
...Abstract Abstract This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear...
Abstract
This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure analysis.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006354
EISBN: 978-1-62708-192-4
...Abstract Abstract This article is concerned with gear tooth failures influenced by friction, lubrication, and wear, and especially those failure modes that occur in wind-turbine components. It provides a detailed discussion on wear (including adhesion, abrasion, polishing, fretting...
Abstract
This article is concerned with gear tooth failures influenced by friction, lubrication, and wear, and especially those failure modes that occur in wind-turbine components. It provides a detailed discussion on wear (including adhesion, abrasion, polishing, fretting, and electrical discharge), scuffing, and Hertzian fatigue (including macropitting and micropitting). Details for obtaining high lubricant specific film thickness are presented. The article describes the selection criteria for lubricants, such as oil, grease, adhesive open gear lubricant, and solid lubricants. It discusses the applications of oil and gear lubricants and the types of standardized gear tests. The article presents some recommendations for selecting lubricants and lubricant viscosity for enclosed gear. It provides some examples of failure modes that commonly occur on gears and bearings in wind turbine gearboxes.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001815
EISBN: 978-1-62708-180-1
...Abstract Abstract Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This article reviews the major types of gears and the basic principles of gear-tooth contact. It discusses...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This article reviews the major types of gears and the basic principles of gear-tooth contact. It discusses the loading conditions and stresses that effect gear strength and durability. The article provides information on different gear materials, the common types and causes of gear failures, and the procedures employed to analyze them. Finally, it presents a chosen few examples to illustrate a systematic approach to the failure examination.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002153
EISBN: 978-1-62708-188-7
... of bore size, bore shape, and stock removal. It illustrates the uses of air, ring, expanding, plug, and bar gages for automatic size control in power stroking of honing tools. The article provides a short description of various honing processes, such as external honing, gear tooth honing, plateau honing...
Abstract
Honing serves an important purpose of generating specified functional characteristics for surfaces besides removing stock and involves the correction of errors resulting from previous machining operations. This article discusses the process capabilities of honing in terms of bore size, bore shape, and stock removal. It illustrates the uses of air, ring, expanding, plug, and bar gages for automatic size control in power stroking of honing tools. The article provides a short description of various honing processes, such as external honing, gear tooth honing, plateau honing, flat honing, electrochemical honing, and hone forming. It also examines various process parameters in microhoning and concludes with information on the applications of microhoning.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005867
EISBN: 978-1-62708-167-2
... are greatly affected by density. The results of induction hardening and process recipe are greatly affected by density of P/M component and alloying techniques. Power requirements for induction hardening of gear teeth Table 2 Power requirements for induction hardening of gear teeth Tooth...
Abstract
Induction hardening is a prominent method in the gear manufacturing industry due to its ability of selectively hardening portions of a gear such as the flanks, roots, and/or tips of teeth with desired hardness, wearing resistance, and contact fatigue strength without affecting the metallurgy of the core. This article provides an overview of gear technology and materials selection. It describes different gear-hardening patterns, namely, tooth-by-tooth hardening, tip-by-tip hardening, gap-by-gap hardening, spin hardening, single-frequency gear hardening, dual-frequency gear hardening, simultaneous dual-frequency gear hardening, and through heating for surface hardening. It provides information on the different inspection methods based on the American Gear Manufacturers Association, revealing metallurgical data, hardness, and dimensions of gears. In addition, the article presents a comparative study on the mechanical properties of contour-hardened and carburized gears. It concludes by describing typical failures of induction-hardened steels and the corresponding prevention methods.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002375
EISBN: 978-1-62708-193-1
... of frequency) include fatigue, impact fracture, wear, and stress rupture ( Table 1 ). The leading causes of failure appear to be tooth-bending fatigue, tooth-bending impact, and abrasive tooth wear. Failure modes of gears Table 1 Failure modes of gears Failure mode Type of failure Fatigue...
Abstract
This article summarizes the various kinds of gear wear, including fatigue, impact fracture, wear, and stress rupture, describes how gear life in service is estimated. It presents the rules concerning lubricants in designing gearing and analyzing failures of gears. The article presents the equations for determining surface durability and life of gears. It tabulates the situations and concepts of pitting failures in gears. The article analyzes some of the more common flaws that affect the life of gear teeth. It reviews the components in the design and structure of each gear and/or gear train that must be considered in conjunction with the teeth.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006114
EISBN: 978-1-62708-175-7
.... Material utilization is very low. Machined gear teeth have an unfavorable grain flow pattern with flow lines intersecting the gear tooth profile. In comparison to the traditional gear manufacture process, the PM process offers several advantages, particularly the elimination of machining and scrap...
Abstract
This article describes the capabilities, limitations, advantages, and disadvantages of the powder metallurgy (PM) gear manufacturing process. It discusses the types of gears that can be produced by PM and presents the design guidelines for PM gears. The article provides information on gear tolerances and performance of PM gears. It also explains various procedures to inspect and test the mechanical properties, dimensional specifications, and surface durability (hardness).
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002145
EISBN: 978-1-62708-188-7
... on transferring the profile from a templet. This method is used in the shaperlike cutting of large tooth forms and in cutting bevel gear teeth on a bevel gear planer. In all these processes, the workpiece is held stationary until a tooth is finished; the piece is then indexed for successive teeth...
Abstract
This article discusses the different classes of gears, namely, spur, helical, herringbone, crossed-axes helical, worm, internal, rack, bevel, or face-type. It describes the methods used to cut the teeth of gears other than bevel gears: milling, broaching, shear cutting, hobbing, shaping, and rack cutting. The article also reviews the methods that are used to cut the teeth of bevel gears, such as face mill cutting, face hob cutting, formate cutting, helix form cutting, the Cyclex method, and template machining. The machining methods best suited to specific conditions are discussed. The article presents the factors influencing the choice of cutting speed and cutting fluids. It outlines two basic methods for the grinding of gear teeth: form grinding and generation grinding. The article concludes with information on the gear inspection techniques used to determine whether the resulting product meets design specifications and requirements.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005842
EISBN: 978-1-62708-167-2
...Abstract Abstract This article focuses on the frequently encountered causes of induction coil failures and typical failure modes in fabrication of hardening inductors, tooth-by-tooth gear-hardening inductors, clamshell inductors, contactless inductors, split-return inductors, butterfly...
Abstract
This article focuses on the frequently encountered causes of induction coil failures and typical failure modes in fabrication of hardening inductors, tooth-by-tooth gear-hardening inductors, clamshell inductors, contactless inductors, split-return inductors, butterfly inductors, and inductors for heating internal surfaces. It discusses the current density distribution and the skin effect, the proximity effect, and crack-propagation specifics. The article also describes selected properties of copper alloys, the electromagnetic edge effect of coil copper turn, and the effect of magnetic flux concentrators on coil life. It also reviews the importance of having appropriate and reliable electrical contacts.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005987
EISBN: 978-1-62708-168-9
... 0.040–0.060 2 1.78–2.54 0.070–0.100 1 2.29–3.30 0.090–0.130 Source: Ref 3 Variations in residual stress measured at tooth foot surface of carburized and induction-hardened gears for JIS SCr 420 steel, carburized in continuous gas carburizing furnace and tempered at 160 °C (320 °F...
Abstract
This article provides an overview of steel gear heat treating processes and brings out the nuances of the various important heat treating considerations for steel gear applications. The heat treatment processes covered are annealing, carburizing, hardening, low-pressure carburizing, induction hardening, through hardening, and nitriding. In view of the emerging use of mathematical modeling and optimization, a brief overview of its application for process and design optimization is also provided.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005952
EISBN: 978-1-62708-168-9
... in heat treatment from heat to heat. These engineering needs relate primarily to properties of the surface and immediate subsurface zones of the gear tooth. Mechanical properties at the radial centerline of the tooth are of little concern because stresses are low, resembling those at the neutral axis...
Abstract
This article commences with a brief introduction on the hardenability of carburized steels, and then reviews the factors used in the selection of carburizing steels and heat treatment methods. The factors include quench medium, stress considerations, case depth, and type of case. The article provides information on steels for carburized gears with emphasis on gear design requirements, selection process, selection of carbon content, case and core hardness, microstructure, and toughness and short-cycle fatigue.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002401
EISBN: 978-1-62708-193-1
... of deformation, the width of the resulting contact bands, and the overall contact stress field. As a contacting gear tooth moves up the profile of the loaded tooth, a sliding-rolling action takes place at the profile interface. At the pitch line, tractive forces are negligible and loading conditions resemble...
Abstract
The mechanism of contact fatigue can be understood in terms of several sources of stress concentration, or stress raisers, within the macroscopic Hertzian stress field. This article focuses primarily on rolling contact fatigue of hardened bearing steels. It discusses Hertzian shear stresses at and below the contact surfaces and briefly summarizes bearings and gear characteristics. The article provides an overview of the key types of gear and bearing steels. It analyzes two types of macropitting that result from the subsurface growth of fatigue cracks, namely, subsurface-origin macropitting and surface-origin macropitting. The article describes the factors influencing contact fatigue life of hardened steel bearings and gears, including hardness, inclusions, carbides, and residual stresses.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.9781627081672
EISBN: 978-1-62708-167-2
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005870
EISBN: 978-1-62708-167-2
... fatigue limit loads. Source: Ref 49 Fig. 55 Factors affecting contact fatigue strength of gear tooth flank surface. Source: Ref 50 Fig. 50 Retained austenite profiles below the surface of the tooth root. VC, vacuum carburizing; DSP, double shot peening; CIH, contour induction...
Abstract
Residual stresses are stresses within a part that result from non-uniform plastic deformation or heating and cooling and play a vital role in ensuring long life of the induction-hardened steel parts. This article provides a description of the formation of residual stresses, and factors affecting their magnitude and distribution as well as their effects on longevity of heat-treated components. The residual stresses of the induction-hardened part are often produced by microstructural transformation, thermal shrinking, distortion, and quenching. Fatigue strength is the main property that gets affected not only by induction hardening but also by residual stresses, quenching conditions, and grain size in the hardened condition. The article concludes with a review of induction heating or hardening in conjunction with other processing methods with examples in terms of properties and, in some cases, effects on residual stress.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005795
EISBN: 978-1-62708-165-8
... of Materials Evaluation and Engineering, Inc. Fig. 18 Induction-hardened gear tooth polished with silicon carbide abrasive paper and etched with 10% nital. Courtesy of Materials Evaluation and Engineering, Inc. Fig. 2 Comparison of case-depth measurements on a sample of 8620 steel with core...
Abstract
Case depth is the normal distance from the surface of the steel to the start of the core. Measurement of case depth is highly sensitive to the type of case hardening, original steel composition, quenching condition, and even to the testing method. This article describes the various methods of measuring case depth in steels, including chemical methods such as the combustion analysis and spectrographic analysis, microhardness test method, macroscopic and microscopic visual methods, and nondestructive methods. It contains a table that provides approximate equivalent hardness numbers for steel.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006656
EISBN: 978-1-62708-213-6
... diffraction two-dimensional patterns for (a) good gear tooth and (b) bad gear tooth Fig. 19 Two-dimensional diffraction patterns of polypropylene films (a) as-cast, (b) heat set at 120 °C (248 °F) for 10 s, and (c) heat set at 120 °C for 10 s and then uniaxially stretched 6 x its original length...
Abstract
This article discusses various concepts of micro x-ray diffraction (XRD) used for the examination of materials in situ. The discussion covers the principles, equipment used, sample preparation procedure, considerations for calibrating a detector, steps for performing data analysis, and applications and interpretation of micro-XRD.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005533
EISBN: 978-1-62708-197-9
... various hardness patterns that were obtained on the same carbon steel shaft with variations in heat time, frequency, and power density. The right side of Figure 10 shows a similar effect when surface hardening a spur gear. As a rule, when it is necessary to harden only the gear tooth tips, a higher...
Abstract
This article describes the applications of induction heat treatment of metals, including normalizing, annealing, hardening, and tempering and stress relieving. It discusses the simulation techniques of the electromagnetic and thermal processes that occur during induction heat treating. The article explains the finite-difference method, finite-element method, mutual impedance method, and boundary-element method for the numerical computation of the induction heat treating processes. It also discusses the direct and indirect coupling approaches for coupling the electromagnetic and heat-transfer problems. Modern computer simulation techniques are capable of effectively simulating electromagnetic and thermal phenomena for many processes that involve electromagnetic induction. The article considers the challenges faced by developers of modern simulation software.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006358
EISBN: 978-1-62708-192-4
... with the pitch circle, there is pure or nearly pure rolling (depending on the accuracy of gear alignment or lateral vibration). Past this point, slip again occurs between tooth surfaces; it reaches its second maximum just at the point where the surfaces separate. Slip can result in scuffing or adhesive wear...
Abstract
This article discusses the physical signs of rolling-contact wear (RCW). It lists the major considerations in gear design and describes the mechanisms of RCW. The article provides a guide to rolling-contact fatigue (RCF) testing methods. It explains the steps involved in the processes of RCF and RCW.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002400
EISBN: 978-1-62708-193-1
... evaluation of carburized steels. An example of component testing is the bending fatigue testing of single teeth in gears ( Ref 34 ). Gears are fabricated, carburized, and mounted in a fixture so that one tooth at a time is subjected to cyclic loading. Recently, identically carburized specimens of the same...
Abstract
Bending fatigue of carburized steel components is a result of cyclic mechanical loading. This article reviews the alloying and processing factors that influence the microstructures and bending fatigue performance of carburized steels. These include austenitic grain size, surface oxidation, retained austenite, subzero cooling, residual stresses, and shot peening. The article describes the analysis of bending fatigue behavior of the steels based on S-N curves that represents a stress-based approach to fatigue. It discusses the types of specimen used to evaluate bending fatigue in carburized steels. The stages of fatigue and fracture of the steels, namely crack initiation, stable crack propagation, and unstable crack propagation, are reviewed. The article analyzes the intergranular fracture at the prior-austenite grain boundaries of high-carbon case microstructures that dominates bending fatigue crack initiation and unstable crack propagation of direct-quenched carburized steels.