Skip Nav Destination
Close Modal
Search Results for
gear strength
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 728
Search Results for gear strength
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Fig. 7 High-strength gas metal arc weldment between an FN-0205 steering gear (6.9 g/cm 3 ) and an AISI 1035 steel shaft using an E70S-type filler wire
More
Image
Published: 01 January 1996
Fig. 8 Bending strength curve for gear life rating of normal industry quality material (Grade 1 per Ref 2 )
More
Image
Published: 09 June 2014
Fig. 33 Bending fatigue strength of gear teeth at (a) tooth gap hardening and (b) flank hardening for various steels. Broken lines denote confidence limit according to DIN 3990. Source: Ref 34 , 42
More
Image
Published: 09 June 2014
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001815
EISBN: 978-1-62708-180-1
... conditions and stresses that effect gear strength and durability. The article provides information on different gear materials, the common types and causes of gear failures, and the procedures employed to analyze them. Finally, it presents a chosen few examples to illustrate a systematic approach...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This article reviews the major types of gears and the basic principles of gear-tooth contact. It discusses the loading conditions and stresses that effect gear strength and durability. The article provides information on different gear materials, the common types and causes of gear failures, and the procedures employed to analyze them. Finally, it presents a chosen few examples to illustrate a systematic approach to the failure examination.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005867
EISBN: 978-1-62708-167-2
... Abstract Induction hardening is a prominent method in the gear manufacturing industry due to its ability of selectively hardening portions of a gear such as the flanks, roots, and/or tips of teeth with desired hardness, wearing resistance, and contact fatigue strength without affecting...
Abstract
Induction hardening is a prominent method in the gear manufacturing industry due to its ability of selectively hardening portions of a gear such as the flanks, roots, and/or tips of teeth with desired hardness, wearing resistance, and contact fatigue strength without affecting the metallurgy of the core. This article provides an overview of gear technology and materials selection. It describes different gear-hardening patterns, namely, tooth-by-tooth hardening, tip-by-tip hardening, gap-by-gap hardening, spin hardening, single-frequency gear hardening, dual-frequency gear hardening, simultaneous dual-frequency gear hardening, and through heating for surface hardening. It provides information on the different inspection methods based on the American Gear Manufacturers Association, revealing metallurgical data, hardness, and dimensions of gears. In addition, the article presents a comparative study on the mechanical properties of contour-hardened and carburized gears. It concludes by describing typical failures of induction-hardened steels and the corresponding prevention methods.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006114
EISBN: 978-1-62708-175-7
... inspection mechanical properties powder metallurgy quality control surface durability POWDER METALLURGY (PM) is a flexible metalworking process for the production of gears. The PM process is capable of producing close tolerance gears with ultimate tensile strengths up to 1445 MPa (210 ksi...
Abstract
This article describes the capabilities, limitations, advantages, and disadvantages of the powder metallurgy (PM) gear manufacturing process. It discusses the types of gears that can be produced by PM and presents the design guidelines for PM gears. The article provides information on gear tolerances and performance of PM gears. It also explains various procedures to inspect and test the mechanical properties, dimensional specifications, and surface durability (hardness).
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002375
EISBN: 978-1-62708-193-1
... on the gear tooth surface as a function of the surface speed. This secondary film is very thin, has a very high shear strength, and is only slightly affected by compressive loads as long as constant temperature is maintained. Certain rules about a lubricant should be remembered in designing gearing...
Abstract
This article summarizes the various kinds of gear wear, including fatigue, impact fracture, wear, and stress rupture, describes how gear life in service is estimated. It presents the rules concerning lubricants in designing gearing and analyzing failures of gears. The article presents the equations for determining surface durability and life of gears. It tabulates the situations and concepts of pitting failures in gears. The article analyzes some of the more common flaws that affect the life of gear teeth. It reviews the components in the design and structure of each gear and/or gear train that must be considered in conjunction with the teeth.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005952
EISBN: 978-1-62708-168-9
... of a beam. Complete gear design should include determination of the following factors: Diametral pitch to provide the necessary static strength and stiffness Compressive stress at the lowest point of single-tooth contact (often referred to as Hertz stress) on the driving gear Bending stress...
Abstract
This article commences with a brief introduction on the hardenability of carburized steels, and then reviews the factors used in the selection of carburizing steels and heat treatment methods. The factors include quench medium, stress considerations, case depth, and type of case. The article provides information on steels for carburized gears with emphasis on gear design requirements, selection process, selection of carbon content, case and core hardness, microstructure, and toughness and short-cycle fatigue.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.9781627081672
EISBN: 978-1-62708-167-2
Image
Published: 01 October 2014
Fig. 4 Determinations of shear yield strengths (top curve) and net stresses at various depths below the surface of a carburized gear indicate where the gear will fail by case crushing. In this instance, the case would fail in the zone below 1.3 mm (0.050 in.) from the surface because
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003327
EISBN: 978-1-62708-176-4
... of the contact surface. Gear specimens should be measured at the tooth half height (or lowest point of single-tooth contact) for surface durability tests and at the midpoint of the root fillet for bending strength tests. Tests Simulating Gear Action Tests that simulate gear action are the RCF test...
Abstract
Mechanical tests are performed to evaluate the durability of gears under load. Gear tooth failures occur in two distinct regions, namely, the tooth flank and the root fillet. This article describes the common failure modes such as scoring, wear, and pitting, on tooth flanks. Failures in root fillets are primarily due to bending fatigue but can be precipitated by sudden overloading (impact). The article presents contact stress computations for gear tooth flank and bending stress computations for root fillets. Specimen characterization is a critical part of any fatigue test program because it enables meaningful interpretation of the results. The article describes four areas of the characterizations: dimensional, surface finish/texture, metallurgical, and residual stress. The rolling contact fatigue test, single-tooth fatigue test, single-tooth single-overload test, and single-tooth impact test are some of the gear action simulating tests discussed in the article.
Image
Published: 01 January 2006
Fig. 4 Pit-initiated in-service failure of a landing gear due to dynamic stresses. The collapse of the high-strength 300M steel main landing gear load barrel was due to severe all-around pitting.
More
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005870
EISBN: 978-1-62708-167-2
... affecting their magnitude and distribution as well as their effects on longevity of heat-treated components. The residual stresses of the induction-hardened part are often produced by microstructural transformation, thermal shrinking, distortion, and quenching. Fatigue strength is the main property...
Abstract
Residual stresses are stresses within a part that result from non-uniform plastic deformation or heating and cooling and play a vital role in ensuring long life of the induction-hardened steel parts. This article provides a description of the formation of residual stresses, and factors affecting their magnitude and distribution as well as their effects on longevity of heat-treated components. The residual stresses of the induction-hardened part are often produced by microstructural transformation, thermal shrinking, distortion, and quenching. Fatigue strength is the main property that gets affected not only by induction hardening but also by residual stresses, quenching conditions, and grain size in the hardened condition. The article concludes with a review of induction heating or hardening in conjunction with other processing methods with examples in terms of properties and, in some cases, effects on residual stress.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005739
EISBN: 978-1-62708-171-9
... metals in airframe structures. This article summarizes the results of materials and component testing. It also presents a cost/benefit analysis of HVOF WC/17Co and WC/10Co4Cr coatings on aircraft landing gear components. aircraft landing gears corrosion cost assessment fatigue hard chrome...
Abstract
High-velocity oxyfuel (HVOF)-applied thermal spray coatings are viable candidates for replacement of hard chrome in numerous applications. HVOF thermal spraying can be used to deposit both metal alloy and cermet coatings that are dense and highly adherent to all the commonly used base metals in airframe structures. This article summarizes the results of materials and component testing. It also presents a cost/benefit analysis of HVOF WC/17Co and WC/10Co4Cr coatings on aircraft landing gear components.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005987
EISBN: 978-1-62708-168-9
.... The total case depth for a carburized tooth should be adjusted based on the diametral pitch, with schematic representation shown in Fig. 5 . Table 3 provides the recommended case depth as a function of diametral pitch. Core hardness of the gears imparts the appropriate bending strength during service...
Abstract
This article provides an overview of steel gear heat treating processes and brings out the nuances of the various important heat treating considerations for steel gear applications. The heat treatment processes covered are annealing, carburizing, hardening, low-pressure carburizing, induction hardening, through hardening, and nitriding. In view of the emerging use of mathematical modeling and optimization, a brief overview of its application for process and design optimization is also provided.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
... castings 354.0 Premium-strength castings for the aerospace industry 355.0 Sand: air compressor pistons; printing press bedplates; water jackets; crankcases. Permanent: impellers; aircraft fittings; timing gears; jet engine compressor cases 356.0 Sand: flywheel castings; automotive transmission...
Abstract
This article summarizes some general alloy groupings by application or major characteristics. The groupings include cast rotor, general-purpose, elevated-temperature, wear-resistant, moderate-strength, high-strength, and high-integrity die casting alloys and cast aluminum alloys bearings. A table lists selected applications for aluminum casting alloys.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005951
EISBN: 978-1-62708-168-9
... Resistance to scuffing or seizing Bending or torsional strength Bending fatigue strength Resistance contact fatigue, pitting, or case crushing Case-hardening processes and their characteristics Table 1 Case-hardening processes and their characteristics Process Characteristics...
Abstract
Case hardening involves various methods and each method has unique characteristics and different considerations in the selection of steels This article reviews the various grades of carburizing steels, carbonitriding steels, nitriding steels, and steels for induction, or flame hardening. This review is based on their process characteristics, compositions, applications, and mechanical properties, which help in selecting steels for case hardening.
Image
Published: 01 January 1987
Fig. 968 Pieces of the hub of a forged aircraft main-landing-gear wheel half, which broke by fatigue. The material is aluminum alloy 2014-T6. Tensile specimens from elsewhere in the wheel had tensile strength of 493.7 MPa (71.6 ksi) and 8.9% elongation in the transverse direction, and tensile
More
1