Skip Nav Destination
Close Modal
Search Results for
gear manufacturing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 680
Search Results for gear manufacturing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002145
EISBN: 978-1-62708-188-7
.... In the generating process, the tooth profile is obtained by a tool that simulates one or more teeth of an imaginary generating gear. A relative rolling motion of the tool with the workpiece generates the tooth surface. This method is used in the hobbing, shaping, and milling processes for manufacturing spur...
Abstract
This article discusses the different classes of gears, namely, spur, helical, herringbone, crossed-axes helical, worm, internal, rack, bevel, or face-type. It describes the methods used to cut the teeth of gears other than bevel gears: milling, broaching, shear cutting, hobbing, shaping, and rack cutting. The article also reviews the methods that are used to cut the teeth of bevel gears, such as face mill cutting, face hob cutting, formate cutting, helix form cutting, the Cyclex method, and template machining. The machining methods best suited to specific conditions are discussed. The article presents the factors influencing the choice of cutting speed and cutting fluids. It outlines two basic methods for the grinding of gear teeth: form grinding and generation grinding. The article concludes with information on the gear inspection techniques used to determine whether the resulting product meets design specifications and requirements.
Image
Published: 01 October 2014
Fig. 1 Major steps and available techniques in the gear manufacturing process. Adapted from Ref 2
More
Image
in Modeling and Simulation of Steel Heat Treatment—Prediction of Microstructure, Distortion, Residual Stresses, and Cracking
> Steel Heat Treating Technologies
Published: 30 September 2014
Image
in Failure Analysis of Gears and Reducers
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 33 Isolated damage on this gear led to the suspicion that a manufacturing error was involved.
More
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005867
EISBN: 978-1-62708-167-2
... Abstract Induction hardening is a prominent method in the gear manufacturing industry due to its ability of selectively hardening portions of a gear such as the flanks, roots, and/or tips of teeth with desired hardness, wearing resistance, and contact fatigue strength without affecting...
Abstract
Induction hardening is a prominent method in the gear manufacturing industry due to its ability of selectively hardening portions of a gear such as the flanks, roots, and/or tips of teeth with desired hardness, wearing resistance, and contact fatigue strength without affecting the metallurgy of the core. This article provides an overview of gear technology and materials selection. It describes different gear-hardening patterns, namely, tooth-by-tooth hardening, tip-by-tip hardening, gap-by-gap hardening, spin hardening, single-frequency gear hardening, dual-frequency gear hardening, simultaneous dual-frequency gear hardening, and through heating for surface hardening. It provides information on the different inspection methods based on the American Gear Manufacturers Association, revealing metallurgical data, hardness, and dimensions of gears. In addition, the article presents a comparative study on the mechanical properties of contour-hardened and carburized gears. It concludes by describing typical failures of induction-hardened steels and the corresponding prevention methods.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006114
EISBN: 978-1-62708-175-7
... Abstract This article describes the capabilities, limitations, advantages, and disadvantages of the powder metallurgy (PM) gear manufacturing process. It discusses the types of gears that can be produced by PM and presents the design guidelines for PM gears. The article provides information...
Abstract
This article describes the capabilities, limitations, advantages, and disadvantages of the powder metallurgy (PM) gear manufacturing process. It discusses the types of gears that can be produced by PM and presents the design guidelines for PM gears. The article provides information on gear tolerances and performance of PM gears. It also explains various procedures to inspect and test the mechanical properties, dimensional specifications, and surface durability (hardness).
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005987
EISBN: 978-1-62708-168-9
... nitriding process modeling steel through hardening GEARS ENABLE MOTION through power transfer in key sectors, including automotive, aerospace, marine, off-highway, and industrial applications. The gear manufacturing industry is estimated to be worth more than $45 billion, 75% of which is accounted...
Abstract
This article provides an overview of steel gear heat treating processes and brings out the nuances of the various important heat treating considerations for steel gear applications. The heat treatment processes covered are annealing, carburizing, hardening, low-pressure carburizing, induction hardening, through hardening, and nitriding. In view of the emerging use of mathematical modeling and optimization, a brief overview of its application for process and design optimization is also provided.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006354
EISBN: 978-1-62708-192-4
... of synthesis in which gear geometry, material, heat treatment, manufacturing methods, and lubrication are selected to meet the requirements of a given application. A gearset must be designed with adequate strength, wear resistance, and scuffing resistance. Lubricant choice and its application method are also...
Abstract
This article is concerned with gear tooth failures influenced by friction, lubrication, and wear, and especially those failure modes that occur in wind-turbine components. It provides a detailed discussion on wear (including adhesion, abrasion, polishing, fretting, and electrical discharge), scuffing, and Hertzian fatigue (including macropitting and micropitting). Details for obtaining high lubricant specific film thickness are presented. The article describes the selection criteria for lubricants, such as oil, grease, adhesive open gear lubricant, and solid lubricants. It discusses the applications of oil and gear lubricants and the types of standardized gear tests. The article presents some recommendations for selecting lubricants and lubricant viscosity for enclosed gear. It provides some examples of failure modes that commonly occur on gears and bearings in wind turbine gearboxes.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
... there is a continued slow and predictable deterioration. The typical hardness range is from 180 to 400 HBW. Case-hardened gears: Smaller gear set and less expensive to manufacture, demands very accurate alignment, and catastrophic failure is often relatively rapid. They may be carburized with a case thickness...
Abstract
This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure analysis.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003327
EISBN: 978-1-62708-176-4
... as a guide for determining the size, geometry, material, manufacturing process, and process conditions for new designs during the design process. Gear testing is also used to compare the performance of a new attribute or characteristic introduced in the gear to a baseline, which defines the part performance...
Abstract
Mechanical tests are performed to evaluate the durability of gears under load. Gear tooth failures occur in two distinct regions, namely, the tooth flank and the root fillet. This article describes the common failure modes such as scoring, wear, and pitting, on tooth flanks. Failures in root fillets are primarily due to bending fatigue but can be precipitated by sudden overloading (impact). The article presents contact stress computations for gear tooth flank and bending stress computations for root fillets. Specimen characterization is a critical part of any fatigue test program because it enables meaningful interpretation of the results. The article describes four areas of the characterizations: dimensional, surface finish/texture, metallurgical, and residual stress. The rolling contact fatigue test, single-tooth fatigue test, single-tooth single-overload test, and single-tooth impact test are some of the gear action simulating tests discussed in the article.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002375
EISBN: 978-1-62708-193-1
... of the unit. Load-carrying capacity also depends on the number of teeth in simultaneous contact. Exact tooth design varies from one manufacturer to another, and for this reason, the patterns of contact also vary. In a double-enveloping worm gear set, the worm is constructed so that it resembles...
Abstract
This article summarizes the various kinds of gear wear, including fatigue, impact fracture, wear, and stress rupture, describes how gear life in service is estimated. It presents the rules concerning lubricants in designing gearing and analyzing failures of gears. The article presents the equations for determining surface durability and life of gears. It tabulates the situations and concepts of pitting failures in gears. The article analyzes some of the more common flaws that affect the life of gear teeth. It reviews the components in the design and structure of each gear and/or gear train that must be considered in conjunction with the teeth.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005869
EISBN: 978-1-62708-167-2
...-808, 1995 3. Krause C. , Biasutti F. , and Davis M. , “Induction Hardening of Gears with Superior Quality and Flexibility Using Simultaneous Dual Frequency (SDF),” American Gear Manufacturers Association , Technical Fall Meeting, Oct 2011 4. Biasutti F...
Abstract
Induction hardening of geared parts used in aeronautic and aerospace industry is an important technology because of its one-piece flow, repeatability, energy efficiency, and tighter control of surface distortion than conventional carburizing. This article describes the requirements and characteristics of induction hardening of transmission parts, such as bearings, shafts, and different types of gears, including bevel gears, spur wheel gears, helical gears, and splines. It provides information on process monitoring and the economic aspects of induction hardening.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005952
EISBN: 978-1-62708-168-9
... metallurgical quality. Most of the time, however, either the cost will be excessive or one or more of the operating requirements will be too close to the following typically recommended maxima (calculated in accordance with American Gear Manufacturers Association methods, where applicable): Compressive...
Abstract
This article commences with a brief introduction on the hardenability of carburized steels, and then reviews the factors used in the selection of carburizing steels and heat treatment methods. The factors include quench medium, stress considerations, case depth, and type of case. The article provides information on steels for carburized gears with emphasis on gear design requirements, selection process, selection of carbon content, case and core hardness, microstructure, and toughness and short-cycle fatigue.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007017
EISBN: 978-1-62708-450-5
...), the slope is higher in region II of Fig. 4(a) compared to the higher hardenability material. Case Study 2: Nonconformance of the Case Depth at the Root and Tip of Gears Industrial Problem One of the common problems faced by the quality department of a gear manufacturing operation...
Abstract
Mathematical models have been used for over five decades in industrial heat-treating operations. Most of these modeling efforts have emanated from academia or research institutes, with the primary approach of mathematically capturing heat-treating processes and validating quality predictions. In this article, a contrarian but more realistic scenario is considered, where two industrial problem descriptions become the starting point. The technical complexity of the industry problem has been elaborated for a deeper understanding of the issue along with elaboration of the approach and potential methods for determining a solution. Then, quantitative analyses of practical industrial problems are demonstrated. Finally, the potential shift in these approaches with the advent of Industry 4.0 is outlined.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001815
EISBN: 978-1-62708-180-1
..., and in the central plane of the gear, they mesh fully along the entire length of the worm. The exact pattern of contact in double-enveloping (or double-throated) worm-gear sets is somewhat controversial and seems to vary with gear design and with method of gear manufacture. It is generally agreed, however...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This article reviews the major types of gears and the basic principles of gear-tooth contact. It discusses the loading conditions and stresses that effect gear strength and durability. The article provides information on different gear materials, the common types and causes of gear failures, and the procedures employed to analyze them. Finally, it presents a chosen few examples to illustrate a systematic approach to the failure examination.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005950
EISBN: 978-1-62708-166-5
..., these models have already been exploited successfully in prediction of the bending of shafts ( Ref 66 , 148 ) and dishing of gear blanks during the blank/case-hardening processes ( Ref 83 , 84 , 147 , 149 , 150 , 151 ), and out-of-roundness (OOR) deviations of bearing rings caused by manufacturing...
Abstract
This article describes the fundamental concepts of heat treatment simulation, including the physical events and their interactions, the heat treatment simulation software, and the commonly used simulation strategies. It summarizes material data needed for heat treatment simulations and discusses reliable data sources as well as experimental and computational methods for material data acquisition. The article provides information on the process data needed for accurate heat treatment simulation and the methods for their determination. Methods for validating heat treatment simulations are also discussed with an emphasis on the underlying philosophy for the selection and design of validation tests. The article also discusses the applications, capabilities, and limitations of heat treatment simulations via selected industrial case studies for a better understanding of the effect of microstructure, distortion, residual stress, and cracking in gears, shafts, and bearing rings.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007013
EISBN: 978-1-62708-450-5
... of these stresses, the magnitude and spread of distortion is reduced. Fig. 26 Schematic illustration of dynamic quenching for specimens of different sizes An examination of the manufacturing of idler gears and internal ring gears helps to explain the process of dynamic quenching. Idler Gears...
Abstract
Gas quenching is one of the standard quenching technologies used in fabricating metallic components. The gas quenching process is usually performed at elevated pressures and is therefore mostly referred to as high-pressure gas quenching (HPGQ). This article presents the physical principles of HPGQ and also presents the equipment for gas quenching. The article describes the three types of gas that are mainly used for HPGQ: nitrogen, helium, and argon. It provides the mathematical model for heat fluxes and temperatures during HPGQ. The article also presents typical industrial applications for HPGQ in addition to equipment process and safety.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001230
EISBN: 978-1-62708-170-2
... Abstract This article focuses on the various technology drivers for finishing methods, namely, tolerance, consistency, surface quality, and productivity. Every finishing method may be viewed as a manufacturing system consisting of four input categories: machine tool, processing tool, work...
Abstract
This article focuses on the various technology drivers for finishing methods, namely, tolerance, consistency, surface quality, and productivity. Every finishing method may be viewed as a manufacturing system consisting of four input categories: machine tool, processing tool, work material, and operational factors. The article provides a classification of finishing as a surface generation process and addresses the characteristics of the generated surfaces and the methods used to measure them. It describes the thermomechanical interactions occurring between the processing tool and the work material in the presence of machine tool and operational factors.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005809
EISBN: 978-1-62708-165-8
... the machine is in the “out” position. Fig. 1 One of the 64 cm (25 in.) automatic quenching machines manufactured by The Gleason Works in Rochester, NY, in the early 1930s. The operator is removing a large spiral bevel gear from the lower die sembly after the quenching operation has been completed...
Abstract
Press quenching is a specialized quenching technique that can be utilized during heat treatment to minimize distortion of complex geometrical components by using specialized tooling for generating concentrated forces that constrain the movement of the component in a carefully controlled manner. This article provides a detailed account of the fundamental components of quenching machines, including the upright machine section, control panel, lower die table, tooling, and the base. In addition, it summarizes the critical factors affecting component distortion during press-quenching.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005940
EISBN: 978-1-62708-166-5
... Abstract This article presents the three levels of investigations of distortion engineering. On Level 1, the parameters and variables influencing distortion in every manufacturing step must be identified. More than 200 parameters can affect distortion. The design of experiments approach allows...
Abstract
This article presents the three levels of investigations of distortion engineering. On Level 1, the parameters and variables influencing distortion in every manufacturing step must be identified. More than 200 parameters can affect distortion. The design of experiments approach allows for the investigation of larger numbers of parameters by a limited number of samples, and can be structured into system analysis, test strategy, test procedure, and test evaluation. Level 2 focuses on understanding the distortion mechanisms by using the concept of distortion potential and its carriers. Distortion engineering aims to compensate distortion using the so-called compensation potential (Level 3). Level 3 discusses the measures to improve homogeneity, and respectively the symmetry, of the carriers of the distortion potential. The article also discusses the compensation of the resulting size and shape changes of the existing asymmetries by well-directed insertions of additional inhomogeneity/asymmetries in one or more of the distributions of the carriers.
1