1-20 of 225 Search Results for

gas-turbine wheel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 1987
Fig. 835 Segment of a fractured second-stage gas-turbine wheel, cast from alloy 713C, that broke from fatigue in service. (About half of the disk portion of the wheel was never recovered.) The fracture origin (at arrow) was in a grinding-relief groove adjacent to the wheel-balancing pad More
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000616
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that covers nickel-base superalloys. The fractographs display the following: hydrogen-embrittlement fracture; segment of a fractured second-stage gas-turbine wheel; gas-producer turbine rotor cast; dendritic stress-rupture fracture surface...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006094
EISBN: 978-1-62708-175-7
.... These materials are used in very high-temperature and cyclic-stress environments, such that process and inspection requirements are some of the most challenging in the metals industry. Applications of Powder Metallurgy Superalloys The first gas-turbine engine to employ widespread use of extruded...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
... in detailed design procedure. The article provides information on the proof testing of ceramics, and presents a short note on public domain software that helps determine the reliability of a loaded ceramic component. The article concludes with several design scenarios for gas turbine components, turbine...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003521
EISBN: 978-1-62708-180-1
..., this is not true. In a gas turbine environment, LCF is induced by stress from thermal cycling. A failure wheel drawn for gas turbines would thus appropriately place LCF on the boundary between stress and temperature. The general purpose failure wheel shown also fails to differentiate between primary and secondary...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... in every system. For example, LCF is represented as a pure stress phenomenon, which is not true in many instances. In a gas turbine environment, LCF is induced by stress resulting from thermal cycling. Thus, a failure wheel drawn for gas turbines would appropriately place LCF on the boundary between stress...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003598
EISBN: 978-1-62708-182-5
... ineffective because of higher concentration of H 2 gas bubbles and sludge ( Ref 1 ). In ECG, the area in which machining takes place can be divided into three zones ( Fig. 2 ). In zone I, material removal is due to electrochemical dissolution that occurs at the leading edge of the ECG wheel. Rotation...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002161
EISBN: 978-1-62708-188-7
... (anode). When using sodium nitrate base electrolytes, another chemical (reduction reaction) change that may occur at the cathode is the formation of ammonia gas. Equipment Figure 3 illustrates a typical ECG system. The major components of the system are: Electrolyte delivery...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005737
EISBN: 978-1-62708-171-9
... Abstract This article provides an overview of key thermal spray coatings used in compressors, combustors, and turbine sections of a power-generation gas turbine. It describes the critical components, including combustors, transition ducts, inlet nozzle guide vanes, and first-stage rotating...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001050
EISBN: 978-1-62708-161-0
... to 85% of their melting points (0.85 T M ). They are generally used at temperatures above 540 °C (1000 °F). Superalloys were initially developed for use in aircraft piston engine turbosuperchargers, and their development over the last 50 years has been paced by the demands of advancing gas turbine...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005740
EISBN: 978-1-62708-171-9
... coatings (TBCs) have a track record in airplanes, gas turbine engines, military motor vehicles, and so on, and applications of TBCs to engine combustion system parts or exhaust system parts also have been investigated for mass-production cars. The merits of heat insulation application on engine parts...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006428
EISBN: 978-1-62708-192-4
... Abstract This article illustrates typical wear and friction issues encountered in gas and steam turbines and their consequences as well as commonly adopted materials solutions. It contains tables that present the summary of wear and friction related issues encountered in steam turbines and gas...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005265
EISBN: 978-1-62708-187-0
... machine that is used to produce high-volume steel castings. This process is used for high-volume automotive turbocharger wheels and vanes as well as gas turbine engine components for temperature probes and struts. Fig. 3 Schematic showing, steps of the countergravity low-pressure inert atmosphere...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001314
EISBN: 978-1-62708-170-2
... °F), although times and temperatures will depend on specific processing requirements. Forethought must be given to safety and environmental concerns. Example: Repair of Gas Turbine Engine For acceptable repair of an aircraft gas turbine engine that had some high-nickel alloy components...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001049
EISBN: 978-1-62708-161-0
... processes wrought nickel alloys SUPERALLOYS are heat-resisting alloys based on nickel, nickel-iron, or cobalt that exhibit a combination of mechanical strength and resistance to surface degradation. Superalloys are primarily used in gas turbines, coal conversion plants, and chemical process industries...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
... and valve components, rolling elements and bearings, paper and wire manufacturing, biomedical implants, heat exchangers, adiabatic diesel engines, advanced gas turbines, and aerospace applications. advanced ceramics aerospace applications mineral processing equipment structural applications...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001051
EISBN: 978-1-62708-161-0
.... Harris K. , Erickson G.L. , and Schwer R.E. , CMSX Single Crystal, CM DS and Integral Wheel Alloys: Properties and Performances , in Cost 50/501 Conference on High Temperature Alloys for Gas Turbines and Other Applications ( Liege ), Reidel , 1986 13. Gell M. , Duhl D.N...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002476
EISBN: 978-1-62708-194-8
... engineer's perspective, brittle materials often exhibit attractive high-strength properties at service temperatures that are well beyond use temperatures of conventional ductile materials. For advanced diesel and turbine engines, ceramic components have already demonstrated functional abilities...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006354
EISBN: 978-1-62708-192-4
... Abstract This article is concerned with gear tooth failures influenced by friction, lubrication, and wear, and especially those failure modes that occur in wind-turbine components. It provides a detailed discussion on wear (including adhesion, abrasion, polishing, fretting, and electrical...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003143
EISBN: 978-1-62708-199-3
..., precautions in use, and general corrosion behavior of each. The applications of titanium alloys include aerospace, gas turbine engines and prostheses. Further, the article graphically presents a comparative study of fatigue, creep and tensile properties of various titanium alloys. aerospace applications...