1-20 of 436 Search Results for

gas-tungsten arc welding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001336
EISBN: 978-1-62708-173-3
...Abstract Abstract The gas-tungsten arc welding (GTAW) process is performed using a welding arc between a nonconsumable tungsten-base electrode and the workpieces to be joined. The arc discharge requires a flow of electrons from the cathode through the arc column to the anode. This article...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005590
EISBN: 978-1-62708-174-0
... tungsten arc welding current types for various materials Table 4 Suitability of gas tungsten arc welding current types for various materials Metal to be welded Alternating current (a) DCEN (b) DCEP (c) Low-carbon steel:  0.38–0.76 mm (0.015–0.030 in.) (a) G (d) E NR  0.76...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005622
EISBN: 978-1-62708-174-0
...-enhancing compound (DeepTIG, Edison Welding Institute) Fig. 3 Penetration-enhancing compounds pasted onto the surface of a butt joint in a pipe for gas tungsten arc welding. Courtesy of the Edison Welding Institute Fig. 4 A 6 mm (0.25 in.) thick type 304 stainless steel welded...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001356
EISBN: 978-1-62708-173-3
... to weld materials in the gas-tungsten arc welding (GTAW) process is obtained by maintaining an arc between a tungsten alloy electrode and a workpiece. This article discusses the advantages and limitations and applications of the GTAW process. It schematically illustrates the key components of a GTAW...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005664
EISBN: 978-1-62708-174-0
...Abstract Abstract This article provides the basic physics of the two most widely used arc welding processes: gas tungsten arc welding and gas metal arc welding. It describes the various control parameters of these processes such as arc length control, voltage control, heat input control...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001440
EISBN: 978-1-62708-173-3
...-welding processes that are used for joining titanium and titanium alloys. The processes include gas-tungsten arc welding (GTAW), gas-metal arc welding (GMAW), plasma arc welding (PAW), electron-beam welding (EBW), laser-beam welding (LBW), friction welding (FRW), and resistance welding (RW). The article...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006391
EISBN: 978-1-62708-192-4
... transferred arc welding (PTAW) or gas metal arc welding (GMAW) Table 2 Criterion for evaluation for tungsten carbide overlays deposited by plasma transferred arc welding (PTAW) or gas metal arc welding (GMAW) Criterion Quality indicator In situ visual observation Bead fluidity Arc...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001340
EISBN: 978-1-62708-173-3
... conductivity, dissociation and recombination, reactivity/oxidation potential, surface tension, gas purity, and gas density. It describes the characteristics of the components of a shielding gas blend. The article discusses the selection of shielding gas for gas-metal arc welding (GMAW), gas-tungsten arc...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003206
EISBN: 978-1-62708-199-3
... for attaching studs to steel plate. Usually more economical than drilling and tapping. SMAW, shielded metal arc welding; GMAW, gas metal arc welding; FCAW, flux-cored arc welding; GTAW, gas tungsten arc welding; PAW, plasma arc welding; SAW, submerged arc welding; EGW, electrogas welding; ESW, electroslag...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003206
EISBN: 978-1-62708-199-3
... Abstract Arc welding methods can be classified into shielded metal arc welding, flux-cored arc welding, submerged arc welding, gas metal arc welding, gas tungsten arc welding, plasma arc welding, plasma-metal inert gas (MIG) welding, and electroslag and electrogas welding. This article provides...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001438
EISBN: 978-1-62708-173-3
... current is preferred; DCEN, with a thoriated tungsten electrode, is suitable under some conditions (see text). (b) For composition, see Table 1 . (c) Maximum root face is 1.6 mm ( 1 16 in.). (d) Gas-tungsten arc welding is used on these thicknesses only when GMAW cannot be used...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001334
EISBN: 978-1-62708-173-3
...Abstract Abstract High-velocity gas motion occurs in and around the arc during welding. This article describes the phenomena of gas flow in gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW). The effect of trace element impurities on GTA weld penetration of selected alloys...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006301
EISBN: 978-1-62708-179-5
...Abstract Abstract This article describes some examples of the different welding processes for gray, ductile, and malleable irons. These processes include fusion welding, repair welding, shielded metal arc welding, gas metal arc welding, flux cored arc welding, gas tungsten arc welding...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001437
EISBN: 978-1-62708-173-3
... or methods, with the exception of forge welding and oxyacetylene welding. This article discusses the heat treatment of nickel alloys and tabulates nominal compositions of selected weldable wrought nickel and nickel alloys. It provides information on gas-tungsten arc welding, gas-metal arc welding, plasma arc...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001409
EISBN: 978-1-62708-173-3
.... Source: Ref 3 Fig. 17 Notch toughness of a gas-tungsten arc welded high-purity ferritic stainless steel (6 mm, or 1 4 in., thick E-Brite 26-1 plate) versus a titanium-stabilized alloy (3 mm, or 1 8 in., thick 26-1 Ti plate). Source: Ref 17 Fig. 12 Top view...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001434
EISBN: 978-1-62708-173-3
...–200 6.4 1 4 150–225 200–300 … (a) Current ranges are typically 10% higher when alternating current is used for E3XX-16 or E3XX-17 electrodes. Procedure range for gas-metal arc welding with ER3XXLSi electrodes by axial spray transfer Table 8 Procedure range for gas...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005642
EISBN: 978-1-62708-174-0
... 2 + 15= CO 2 Oxidizing Mild steels Not used (a) GMAW, gas metal arc welding; FCAW, flux cored arc welding. (b) GTAW, gas tungsten arc welding; PAW, plasma arc welding Abstract Abstract This article contains a table that lists the properties of various fuel gases, namely...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001441
EISBN: 978-1-62708-173-3
...Abstract Abstract Zirconium and its alloys are available in two general categories: commercial grade and reactor grade. This article discusses the welding processes that can be used for welding any of the zirconium alloys. These include gas-tungsten arc welding (GTAW), gas-metal arc welding...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001435
EISBN: 978-1-62708-173-3
..., possible distortion during subsequent machining, the desired finish of the machined surfaces, and prior heat treatment. It describes various welding process for welding cast irons, including oxyfuel welding, braze welding, shielded metal arc welding, gas metal arc welding, and gas-tungsten arc welding...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005636
EISBN: 978-1-62708-174-0
... Various driving forces and the resulting liquid convection in a gas tungsten arc weld pool. (a) Electromagnetic force. (b) Surface tension gradient force with negative ∂γ/∂ T . (c) Surface tension gradient force with positive ∂γ/∂ T . (d) Buoyancy force. (e) Plasma jet shear stress. The symbol γ...