1-20 of 960 Search Results for

gas porosity

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005222
EISBN: 978-1-62708-187-0
... Abstract This article provides a detailed discussion on the causes of formation of shrinkage porosity and gas porosity along with the methods involved in eliminating them. It discusses the process of porosity formation and the factors affecting porosity formation, including alloy composition...
Image
Published: 01 December 2008
Fig. 1 (a) Gas porosity and (b) shrinkage porosity in an AA 5182 remelt secondary ingot More
Image
Published: 01 December 2008
Fig. 9 Typical micrograph of gas porosity. Original magnification: 100× More
Image
Published: 01 January 2002
Fig. 58 Gas porosity in electron beam welds of low-carbon steel and titanium alloy. (a) Gas porosity in a weld in rimmed AISI 1010 steel. Etched with 5% nital. 30×. (b) Massive voids in weld centerline of 50 mm (2 in.) thick titanium alloy Ti-6Al-4V. 1.2× More
Image
Published: 01 December 2004
Fig. 11 An 18 k gold casting (75Au-12.5Ag-12.5Cu) showing gas porosity. 100× More
Image
Published: 01 December 2004
Fig. 28 Microsection through a piece of jewelry reveals gas porosity defect. 50× More
Image
Published: 15 January 2021
Fig. 30 Aluminum casting exhibiting gas porosity More
Image
Published: 31 August 2017
Fig. 34 Two views of complex gas porosity resulting from the mold (no-bake, phenolic, urethane)-metal and wet refractory reactions. Used with permission from Ref 13 More
Image
Published: 15 June 2020
Fig. 3 Entrapped gas porosity located in a directed-energy deposition Ti-6Al-4V component More
Image
Published: 01 January 1993
Fig. 1 Types of gas porosity commonly found in weld metal. (a) Uniformly scattered porosity. (b) Cluster porosity. (c) Linear porosity. (d) Elongated porosity More
Book Chapter

By David V. Neff
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005353
EISBN: 978-1-62708-187-0
... Abstract Gas porosity is a major factor in the quality and reliability of castings. The major cause of gas porosity in castings is the evolution of dissolved gases from melting and dross or slag containing gas porosity. Degassing is the process of removing these gases. This article describes...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006557
EISBN: 978-1-62708-290-7
... collapse, gas porosity, solidification cracking, solid-state cracking, and surface-connected porosity. The types of defects in solid-state/sintering processes are sintering porosity and improper binder burnout. The article also discusses defect-mitigation strategies, such as postprocess machining, surface...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005344
EISBN: 978-1-62708-187-0
... presents some of the common defects in each of the seven categories. It also discusses select case studies relevant to inclusions, cavities (gas porosity, shrinkage), and discontinuities (hot tearing, cold shut). casting defects gas porosity hot tearing inclusions metallic projections cavities...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005192
EISBN: 978-1-62708-187-0
... of control or removal of the dissolved gases are discussed. The most common method for removing hydrogen from aluminum, copper, and magnesium is inert gas flushing. The article provides information on techniques to overcome gas porosity in ferrous and nonferrous metals. aluminum alloys cast irons...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... the effects of load frequency and temperature, material condition, and manufacturing practices on fatigue strength. It provides information on subsurface discontinuities, including gas porosity, inclusions, and internal bursts as well as on corrosion fatigue testing to measure rates of fatigue-crack...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005420
EISBN: 978-1-62708-196-2
... Abstract This article focuses on the concepts involved in heat-transfer modeling, thermomechanical modeling, and microsegregation modeling of hot tearing. It discusses the modeling of solidification defects, namely, inclusion entrapment, segregation, shrinkage cavities, gas porosity, mold-wall...
Image
Published: 01 December 2004
Fig. 7 Gross porosity in gas tungsten arc weld joining 5 mm (0.190 in.) thick AZ31B-H24 sheets. ER AZ61A filler metal. Causes include dirty base metal and filler metal, inadequate coverage by shielding gas, and moisture in gas. Etchant 2, Table 6 . 3.8× More
Image
Published: 30 August 2021
Fig. 35 Radiograph showing cluster porosity in gas metal arc welding process due to disruption of shielding gas. Incomplete penetration (IP) of the weld root is also shown. More
Image
Published: 01 January 2002
Fig. 29 Discontinuities that may be encountered in semisolid processing, (a) Surface blisters. 75×. (b) Cold shuts. 225×. (c) Nonfill. 0.5×. (d) Hot tears. 75×. (e) Shrinkage porosity. 40×. (f) Gas porosity. 100× More
Image
Published: 01 August 2018
and vertical). (b) Gas porosity likely from entrapped gas within powders More