Skip Nav Destination
Close Modal
Search Results for
gas density
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1620
Search Results for gas density
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001340
EISBN: 978-1-62708-173-3
.../oxidation potential, surface tension, gas purity, and gas density. It describes the characteristics of the components of a shielding gas blend. The article discusses the selection of shielding gas for gas-metal arc welding (GMAW), gas-tungsten arc welding (GTAW), and plasma arc welding (PAW), as well...
Abstract
The shielding gas used in a welding process has a significant influence on the overall performance of the welding system. This article discusses the basic properties of a shielding gas in terms of ionization potential, thermal conductivity, dissociation and recombination, reactivity/oxidation potential, surface tension, gas purity, and gas density. It describes the characteristics of the components of a shielding gas blend. The article discusses the selection of shielding gas for gas-metal arc welding (GMAW), gas-tungsten arc welding (GTAW), and plasma arc welding (PAW), as well as the influence of shielding gas on weld mechanical properties. It concludes with a discussion on flux-cored arc welding.
Image
Published: 15 June 2020
Fig. 5 Density of 17-4 PH stainless steel gas- and water-atomized LPBF parts before and after HIP treatment as a function of energy density
More
Image
Published: 15 June 2020
Fig. 8 Variation in hardness with energy density for 17-4 PH stainless steel gas- and water-atomized LPBF parts before and after HIP treatment
More
Image
Published: 15 June 2020
Fig. 10 Variation in elongation with energy density for 17-4 PH stainless steel gas- and water-atomized LPBF parts before and after HIP treatment.
More
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005770
EISBN: 978-1-62708-165-8
... Equation 2 describes the theoretical correlation between the heat-transfer coefficient, α, and the process parameters: (Eq 2) α = C ⋅ w 0.7 ρ 0.7 d − 0.3 η − 0.39 c p 0.31 λ 0.69 where C is a constant, w is the gas velocity, ρ is the gas density...
Abstract
The gas quenching process is usually performed at elevated pressures, and is therefore, mostly referred to as high-pressure gas quenching (HPGQ). This article describes the physical principles of HPGQ; the two main types of equipment used, namely, single-chamber furnaces and cold chambers; and the three gases used, namely, nitrogen, helium, and argon. It also discusses two different groups of fixture materials used, namely, high-nickel-content alloys and carbon-fiber-reinforced carbon materials. The article exemplifies the process of dynamic gas quenching and how core hardness values can be predicted in industrial practices. It also discusses the improvements in distortion control with the application of gas-flow reversing and dynamic gas quenching.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007013
EISBN: 978-1-62708-450-5
... hardening temperature of 920 °C (1688 °F), gas temperature of 100 °C (212 °F) The amount of energy extracted can be described by the heat flux density q ̇ . According to Eq 1 , the heat flux density is proportional to the heat-transfer coefficient (HTC) α. This HTC is the dominating...
Abstract
Gas quenching is one of the standard quenching technologies used in fabricating metallic components. The gas quenching process is usually performed at elevated pressures and is therefore mostly referred to as high-pressure gas quenching (HPGQ). This article presents the physical principles of HPGQ and also presents the equipment for gas quenching. The article describes the three types of gas that are mainly used for HPGQ: nitrogen, helium, and argon. It provides the mathematical model for heat fluxes and temperatures during HPGQ. The article also presents typical industrial applications for HPGQ in addition to equipment process and safety.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001289
EISBN: 978-1-62708-170-2
... where the gas density is low and the mean free path for collision is very long. In vacuum-barrel deposition processing, this means that the pressure is lower than about 1.3 mPa (1 × 10 −5 torr). A plasma is a low-pressure gas that contains enough ions and electrons to have an appreciable electrical...
Abstract
This article begins with a list of the factors that influence the properties of physical vapor deposited films. It describes the steps involved in ion plating, namely, surface preparation, nucleation, interface formation, and film growth. The article discusses the factors influencing the properties of ion-plated films. The sources of potential applied on substrate surface, bombarding species, and depositing species are addressed. The article also provides information on the parameters that influence bombardment. It concludes with a discussion on the advantages, limitations, and applications of ion plating.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005794
EISBN: 978-1-62708-165-8
... through it. Otherwise, the bed will tend to fluctuate in density with channelling and slugging. This is more important for shallow beds, such as wire patenting beds, because once channels have formed, these may persist, so that gas mainly passes up through the void regions of the bed, while...
Abstract
The fluidized bed provides a means for exchanging heat between a metal part, the solid particles, and the fluidizing gas and which is viable for quenching. This article briefly considers the design aspects of the gas distributor, plenum, container, immersed cooling tubes and surface air spray cooling system in the quenching fluidized bed. It describes the fundamental factors affecting quenching power of the fluidized beds, namely, particle size, particle material, fluidizing gas composition, fluidizing gas flow rate, bed temperature and pressure, and the arrangement of quenched parts with respect to one another and to the bed. The article discusses the advantages, disadvantages, various applications and processes, including conventional batch quenching, two-step batch quenching, and continuous quenching of fluidized bed quenching, in detail.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005719
EISBN: 978-1-62708-171-9
... flows (fuel-to-oxygen ratio being a significant parameter in flame spray processes) Gas characteristics: density, thermal conductivity, etc. Available energy, electrical or chemical, acting upon the arc/flame gases Temperature Variables Temperature variables are controlled in part...
Abstract
This article discusses various control processes carried out in powder feeding, thermal spraying, and gas flow of the thermal spray process to standardize the coating quality. Quality of the entire powder feeding process can be achieved by controlling the processing of feeding equipment as well as the characteristics of the powder being fed. Gas flow control can be achieved by using rotameters, critical orifices, and thermal mass flowmeters, whose ability to provide useful information is defined by their resolution, accuracy, linearity, and repeatability. The commercial thermal spray controls discussed here include the open-loop input-based, open-loop output-based, closed-loop input-based, and closed-loop output-based or adaptive controls. The article discusses the common causes and practical solutions for arc starting problems. It also outlines certain important developments in measuring individual and collective particle velocities, temperature, and trajectories as well as other plume characteristics for the plasma spray process.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006298
EISBN: 978-1-62708-179-5
... conductivity, ρ m is the mold density, c p is the mold specific heat, L is the latent heat of vaporization/condensation, and g g is the gas mass fraction. The last term on the right side of Eq 1 accounts for the binder vaporization and/or condensation. Gas Pressure Gas pressure ( P...
Abstract
Modeling of gas evolution during sand mold castings is one of the most important technical and environmental issues facing the metal casting industry. This article focuses on describing the capability of numerically predicting gas evolution for the furan binder/silica sand system. It illustrates numerical modeling to study the gas evolution from furan binder/silica sand mold aggregate for aluminum, cast iron, and steel alloy cast components. The article discusses simulation results and experimental validation for aluminum alloys, cast iron castings, and steel alloys, as well as a parametric study that investigated the effects of various variables. It concludes with information on the application of 3-D modeling methodology to investigate gas emissions in furan binder/silica sand castings for steel 4140 and aluminum A356 alloys.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005597
EISBN: 978-1-62708-174-0
... used for welding. Table 1 lists the basic properties of gases used for welding ( Ref 1 ). Properties of shielding gases used for welding Table 1 Properties of shielding gases used for welding Gas Chemical symbol Molecular weight Specific gravity (a) Density Ionization potential g...
Abstract
The shielding gas used in an arc welding process has a significant influence on the overall performance of the welding system. These gases are argon, helium, oxygen, hydrogen, nitrogen, and carbon dioxide. This article discusses the shielding gas selection criteria for plasma arc welding, gas metal arc welding, and flux cored arc welding. It describes the basic properties of shielding gases, namely, dissociation, recombination, reactivity potential, oxidation potential, and gas purity. The article also provides information on the influence of the shielding gas on weld mechanical properties and self-shielded flux cored arc welding.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005927
EISBN: 978-1-62708-166-5
... with an increase in the diameter and density of the particles and is dependent on the density and viscosity of the gas. Figure 3 plots the dependence of minimum fluidizing velocity on these parameters. For 120-mesh alumina particles with a density of 3890 kg/m 3 (240 lb/ft 3 ), their minimum fluidizing velocity...
Abstract
This article discusses the important characteristics of fluidized beds. The total space occupied by a fluidized bed can be divided into three zones: grid zone, main zone, and above-bed zone. The article discusses the various types of atmospheres of fluidized beds, such as oxidizing and decarburizing atmosphere; nitrocarburizing and nitriding atmosphere; carburizing and carbonitriding atmosphere; and chemical vapor deposition atmosphere. External resistance heating, external combustion heating, internal resistance heating, direct resistance heating, submerged combustion heating, and internal combustion heating can be used to achieve the heat input for a fluidized bed. The article also describes the operations, design considerations, and applications of fluidized-bed furnaces in heat treating. Thermochemical surface treatments, such as carburizing, carbonitriding, nitriding, and nitrocarburizing, are also discussed. Finally, the article reviews the principles and applications of fluidized-bed heat treatment.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001287
EISBN: 978-1-62708-170-2
... the advantages, limitations, and applications of vacuum deposition processes. Finally, it provides information on the gas evaporation process, its processing chamber, and related systems. evaporation process equipment gas evaporation process control process monitoring reactive evaporation thermal...
Abstract
This article discusses the fundamentals of thermal vaporization and condensation and provides information on the various vaporization sources and methods of vacuum deposition. It offers an overview of reactive evaporation and its deposition techniques. The article also explains the advantages, limitations, and applications of vacuum deposition processes. Finally, it provides information on the gas evaporation process, its processing chamber, and related systems.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003054
EISBN: 978-1-62708-200-6
... resistance, and other properties. This article discusses the fundamentals of sintering and its effects on pore structures and particle density. It addresses some of the more common sintering methods, including solid-state, liquid-phase, and gas pressure sintering, and presents alternative processes...
Abstract
Sintering provides the interparticle bonding that generates the attractive forces needed to hold together the otherwise loose ceramic powder mass. It also improves hardness, strength, transparency, toughness, electrical conductivity, thermal expansion, magnetic saturation, corrosion resistance, and other properties. This article discusses the fundamentals of sintering and its effects on pore structures and particle density. It addresses some of the more common sintering methods, including solid-state, liquid-phase, and gas pressure sintering, and presents alternative processes such as reaction sintering and self-propagating, high-temperature synthesis. It also describes several pressure densification methods, including hot isostatic pressing, gas pressure sintering, molten particle deposition, and sol-gel processing. The article concludes with a section on grain growth that discusses the underlying mechanisms and kinetics and the relationship between grain growth and densification.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001288
EISBN: 978-1-62708-170-2
... the cathode and anode electrodes in the presence of a sufficient gas density (approximately 10 to 500 μbar). Under a sufficiently large electric potential, the gas atoms between the electrodes become ionized and diffuse through the plasma. However, only the ions in the near-cathode region will “feel...
Abstract
Sputtering is a nonthermal vaporization process in which the surface atoms are physically ejected from a surface by momentum transfer from an energetic bombarding species of atomic/molecular size. It uses a glow discharge or an ion beam to generate a flux of ions incident on the target surface. This article provides an overview of the advantages and limitations of sputter deposition. It focuses on the most common sputtering techniques, namely, diode sputtering, radio-frequency sputtering, triode sputtering, magnetron sputtering, and unbalanced magnetron sputtering. The article discusses the fundamentals of plasma formation and the interactions on the target surface. A comparison of reactive and nonreactive sputtering is also provided. The article concludes with a discussion on the several methods of process control and the applications of sputtered films.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006621
EISBN: 978-1-62708-290-7
... expensive as they use large amounts of inert process gas as well as a small fraction of the production lot in each atomization run ( Ref 12 , 13 ). On the other hand, water-atomized powders are relatively less expensive but the ability to fabricate high density LPBF parts from water-atomized powders...
Abstract
This article focuses on a study that was performed to understand the effects of powder attributes; process parameters; and hot isostatic pressing (HIP) treatment on the densification, mechanical and corrosion properties, and microstructures of 17-4 PH stainless steel gas- and water-atomized laser-powder bed fusion (LPBF) parts at various energy densities. The results from the study showed the strong dependence of densification, mechanical properties, and microstructures on temperature, pressure, and time during the HIP cycle. The density, ultimate tensile strength, hardness and yield strength of gas and water-atomized LPBF parts increased due to HIP treatment and were higher than as-printed properties. The results also confirmed superior corrosion performance of the HIP treated LPBF parts.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005225
EISBN: 978-1-62708-187-0
... process that always produces a wide range of droplet diameters. The article schematically illustrates a typical log-normal droplet diameter probability density distribution on a mass or volume basis obtained by gas atomization. It also explains the changes in solid fraction during the spray casting...
Abstract
Spray casting, also known as spray forming, is a niche casting process for the manufacture of preforms. This article lists commercial examples of alloys manufactured by spray casting and provides sequential steps of the spray casting process. Gas atomization is a chaotic, stochastic process that always produces a wide range of droplet diameters. The article schematically illustrates a typical log-normal droplet diameter probability density distribution on a mass or volume basis obtained by gas atomization. It also explains the changes in solid fraction during the spray casting process as a function of axial distance from the point of droplet atomization. The article concludes with information on the occurrence of macrosegregation and coarsening in spray cast preforms.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001286
EISBN: 978-1-62708-170-2
... material can be transported through a vacuum, gas, or plasma. The vacuum environment allows control of the contamination in the ambient environment to any desired level. The gaseous environment may thermalize energetic particles and cause vapor phase nucleation, depending on the gas density (see...
Abstract
This article describes eight stages of the atomistic film growth: vaporization of the material, transport of the material to the substrate, condensation and nucleation of the atoms, nuclei growth, interface formation, film growth, changes in structure during the deposition, and postdeposition changes. It also discusses the effects and causes of growth-related properties of films deposited by physical vapor deposition processes, including residual film stress, density, and adhesion.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003140
EISBN: 978-1-62708-199-3
... Abstract Titanium and its alloys are used in various applications owing to its high strength, stiffness, good toughness, low density, and good corrosion resistance. This article discusses the applications of titanium and titanium alloys in gas turbine engine components, aerospace pressure...
Abstract
Titanium and its alloys are used in various applications owing to its high strength, stiffness, good toughness, low density, and good corrosion resistance. This article discusses the applications of titanium and titanium alloys in gas turbine engine components, aerospace pressure vessels, optic-system support structures, prosthetic devices, and applications requiring corrosion resistance and high strength. It explains the effects of alloying elements in titanium alloys as they play an important role in controlling the microstructure and properties and describes the secondary phases and martensitic transformations formed in titanium alloy systems. Information on commercial and semicommercial grades and alloys of titanium is tabulated. The article also discusses the different grades of titanium alloys such as alpha, near-alpha alloys, alpha-beta alloys, beta alloys, and advanced titanium alloys (titanium-matrix composites and titanium aluminides).
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
... be avoided by adding the appropriate filler wire to alter weld composition. Inclusions, typically oxides that may occur with unstable keyhole flow, may entrap gas or even air with imperfect gas shielding. Loss of alloying elements due to the high power density of lasers that may vaporize elements...
Abstract
Most welding lasers fall into the category of fiber, disc, or direct diode, all of which can be delivered by fiber optic. This article provides a comparison of the energy consumptions and efficiencies of laser beam welding (LBW) with other major welding processes. It discusses the two modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution, absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding.
1