Skip Nav Destination
Close Modal
Search Results for
gamma-ray radiography
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 34 Search Results for
gamma-ray radiography
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003238
EISBN: 978-1-62708-199-3
... of radiation in radiographic inspection, including X-rays and gamma rays. It deals with the characteristics that differentiate neutron radiography from X-ray or gamma-ray radiography. The geometric principles of shadow formation, image conversion, variation of attenuation with test-piece thickness, and many...
Abstract
Radiography is a nondestructive-inspection method that is based on the differential absorption of penetrating radiation by the part or test piece (object) being inspected. This article discusses the fundamentals and general applications of radiography, and describes the sources of radiation in radiographic inspection, including X-rays and gamma rays. It deals with the characteristics that differentiate neutron radiography from X-ray or gamma-ray radiography. The geometric principles of shadow formation, image conversion, variation of attenuation with test-piece thickness, and many other factors that govern the exposure and processing of a neutron radiograph are similar to those for radiography using X-rays or gamma rays.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002363
EISBN: 978-1-62708-193-1
... emission techniques, ultrasonic methods, eddy current techniques, infrared techniques, exoelectron methods, and gamma radiography. The article explains the microscopy methods used to determine fatigue crack initiation and propagation. These include electron microscopy, scanning tunneling microscopy, atomic...
Abstract
This article describes the test techniques that are available for monitoring crack initiation and crack growth and for obtaining information on fatigue damage in test specimens. These techniques include optical methods, the compliance method, electric potential measurement, and gel electrode imaging methods. The article discusses the magnetic techniques that are primarily used as inspection techniques for detecting fatigue cracks in structural components. It details the principles and operation procedures of the liquid penetrant methods, positron annihilation techniques, acoustic emission techniques, ultrasonic methods, eddy current techniques, infrared techniques, exoelectron methods, and gamma radiography. The article explains the microscopy methods used to determine fatigue crack initiation and propagation. These include electron microscopy, scanning tunneling microscopy, atomic force microscopy, and scanning acoustic microscopy. The article also reviews the X-ray diffraction technique used for determining the compositional changes, strain changes, and residual stress evaluation during the fatigue process.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006459
EISBN: 978-1-62708-190-0
... radiography provides benefits that are making it a technique of choice for x-ray inspection for both x-rays and gamma rays. Digital radiography systems are being used for in-service nondestructive testing for manufacturing and production lines. The DDAs also are available as portable, handheld devices, which...
Abstract
Digital radiography is a technique that uses digital detector arrays (linear or area) to capture an X-ray photonic signal and convert it to an electronic signal for display on a computer. This article begins with an overview of real-time radiography and provides a schematic illustration of a typical radioscopic system using an X-ray image intensifier. It discusses the advantages and limitations of real-time radiography. Computed radiography (CR) is one of the radiography techniques that utilizes a reusable detector comprised of photostimuable luminescence (PSL) storage phosphor. The article provides a schematic illustration of a typical storage phosphor imaging plate. It concludes with a discussion on the benefits of digital radiography.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... diffraction Penetrating rays of x-ray, gamma rays, or neutrons passing through or reflecting from test object cast shadows or patterns on film or digital imaging plates Manufacturing, weld inspection, finding objects in closed containments, metrology of enclosed objects, thickness Hazardous radiation...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006448
EISBN: 978-1-62708-190-0
... of the particular electron rearrangements taking place. These characteristic x-rays usually have much higher intensities than the background of bremsstrahlung having the same wavelengths. Production of γ-Rays Gamma rays are generated during the radioactive decay of both naturally occurring and artificially...
Abstract
Radiography is the process or technique of producing images of a solid material on a paper/photographic film or on a fluorescent screen by means of radiation particles or electromagnetic waves of short wavelength. This article reviews the general characteristics and safety principles associated with radiography. There are two main aspects of safety: monitoring radiation dosage and protecting personnel. The article summarizes the major factors involved in both and discusses the operating characteristics of X-ray tubes. It describes the various methods of controlling scattered radiation: use of lead screens; protection against backscatter and scatter from external objects; and use of masks, diaphragms, collimators, and filtration. The article concludes with a discussion on image conversion media, including recording media, lead screens, lead oxide screens, and fluorescent intensifying screens.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006445
EISBN: 978-1-62708-190-0
..., and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density...
Abstract
The potential for introducing defects during processing becomes greater as the relative density of pressed and sintered powder metallurgy (PM) parts increases and more multilevel parts with complex geometric shapes are produced. This article discusses the potential defects in pressed and sintered PM parts: density variations, compaction and ejection cracks, microlaminations, poor degree of sintering, and voids from prior lubricant agglomerates. It describes the various methods applicable to green compacts: direct-current resistivity testing, radiographic techniques, computed tomography, and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density determination, and visual inspection.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006455
EISBN: 978-1-62708-190-0
... is speed in making a calculation, which can reduce setup time and produce economic benefits. Gamma-Ray Exposure Charts Gamma-ray exposure charts are constructed in a manner similar to the exposure charts used in determining x-ray exposures. Instead of expressing the exposure in milliampere-seconds...
Abstract
Film radiography requires the development of the exposed film so that the latent image becomes visible for viewing. It describes the general characteristics of film, including speed, gradient, and graininess, and the factors affecting film selection and exposure time. The article discusses the three major inspection techniques for tubular sections, namely, the double-wall, double-image technique; the double-wall, single-image technique; and the single-wall, single-image technique. It illustrates the arrangements of penetrameters and identification markers for the radiography of plates, cylinders, and flanges. The article discusses various control methods, including the use of lead screens; protection against backscatter and scatter from external objects; and the use of masks, diaphragms, collimators, and filtration. The radiographic appearance of specific types of flaws is also discussed. The article concludes with a discussion on two methods of radiographic film processing: manual and automatic processing.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006477
EISBN: 978-1-62708-190-0
... of penetrating radiation by the material. X-rays or gamma rays are the two types of waves used for this process. The radiography method works well for detecting and sizing volumetric flaws such as pores, voids, and inclusions. With the radiographic method, it is possible to examine a wide variety of materials...
Abstract
A number of nondestructive evaluation (NDE) methods, such as radiography, ultrasound, and eddy current, are available to detect flaws in solid materials. This article describes the fundamental aspects of these NDE methods in terms of operation principles. It presents some examples of the methods performed on various types of flaws resulting from solid-state welding processes.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005616
EISBN: 978-1-62708-174-0
... absorption of penetrating radiation by the material. X-rays or gamma rays are the two types of waves used for this process. The radiography method works well for detecting and sizing volumetric flaws such as pores, voids, and inclusions. With the radiographic method, it is possible to examine a wide variety...
Abstract
This article describes the fundamental aspects of three nondestructive evaluation (NDE) methods of solid-state welds in terms of operation principles. These methods are radiography, ultrasound, and eddy current methods. The article provides examples of these NDE techniques performed on various types of flaws resulting from solid-state welding processes.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006456
EISBN: 978-1-62708-190-0
.... A radiation source, such as an isotopic gamma source, an x-ray system, or a linear accelerator. The radiation sources used in industrial CT systems are similar to the x-ray and γ-ray sources used in industrial radiography. Flat panel detector for measuring the transmitted radiation. Industrial CT systems...
Abstract
Computed tomography (CT) is an imaging technique that generates a three-dimensional (3-D) volumetric image of a test piece. This article illustrates the basic principles of CT and provides information on the types, applications, and capabilities of CT systems. A comparison of performance characteristics for film radiography, real-time radiography, and X-ray computed tomography is presented in a table. A functional block diagram of a typical computed tomography system is provided. The article discusses CT scanning geometry that is used to acquire the necessary transmission data. It also provides information on digital radiography, image processing and analysis, dual-energy imaging, and partial angle imaging, of a CT system.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001473
EISBN: 978-1-62708-173-3
... technique uses radiation, either as x-rays or gamma rays, to penetrate the weld to create a latent image on radiographic film. The test piece absorbs radiation, but when flaws are present, less is absorbed than the amount absorbed by the parent material, which produces a localized darkening of the film...
Abstract
This article describes the applications, methods, and limitations of five principal nondestructive test methods, namely, penetrant testing, magnetic-particle testing, eddy current testing, radiographic testing, and ultrasonic testing. The article also provides guidance for the method selection for respective applications.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006336
EISBN: 978-1-62708-179-5
... is limited to less than 500 keV, but devices such as betatrons or linear accelerators can approach 30 MeV. These devices are rare because they are expensive and relatively large. Radioactive sources produce gamma rays by fission of unstable isotopes such as cobalt 60 or iridium 192. These radioactive sources...
Abstract
Nondestructive inspection (NDI) methods for cast iron are used to ensure that the parts supplied perform as required by the purchaser. This article focuses on the principal nondestructive methods used to inspect for anomalies in cast irons and to determine if the volume, shape, size, or number of these anomalies exceeds the maximum allowed by the purchaser. The nondestructive methods include visual inspection, dimensional inspection, liquid penetrant inspection, magnetic-particle inspection, eddy-current inspection, radiographic inspection, ultrasonic inspection, resonant testing, and leak testing. The technique, strengths, and weaknesses of each of the nondestructive methods are also discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
.... Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004215
EISBN: 978-1-62708-184-9
... of available techniques is reduced. For example, x-ray radiography is commonly carried out at the fabrication stage but is generally not a realistic inspection method in service, where gamma radiography is generally employed due to its portability and independence from an external power source...
Abstract
This article focuses on the aspects associated with inspection related to pressure vessels and pipework. These aspects include inspection policy, inspection planning and procedures, inspection strategy, inspection methodology, preparation for inspection, invasive inspection, internal visual inspection, and non-invasive inspection. Inspection execution, risk-based inspection, competence assurance of inspection personnel, inspection coverage, inspection periodicity, inspection anomaly criteria, assessment of fitness, and reporting requirements, are also discussed. The article addresses the data acquisition, reporting and trending, and review and audit for the inspection. It reviews inspection techniques, including visual inspection, ultrasonic inspection, and radiographic inspection.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003463
EISBN: 978-1-62708-195-5
... neutron, gamma, and x-ray, are used to study composites. Detailed information on radiography techniques is provided in the article “Nondestructive Testing” in this Volume. Ultrasonic Techniques Ultrasonic techniques are most frequently used for nondestructive inspection of composites. Various...
Abstract
Mechanical and environmental loadings cause a variety of failure modes in composites, including matrix cracking, fiber-matrix debonding, delamination between plies, and fiber breakage. This article summarizes visual analysis and nondestructive testing methods for the failure analysis of composites. These methods include radiography, ultrasonic techniques, acoustic emission, and thermograph. The article also provides information on destructive test techniques.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001073
EISBN: 978-1-62708-162-7
... and titanium, thereby increasing the volume fraction of gamma prime (γ′) precipitate. Cobalt in nickel-base superalloys also reduces the tendency for grain boundary carbide precipitation, thus reducing chromium depletion at the grain boundaries ( Ref 2 ). Cemented Carbides The role of cobalt in cemented...
Abstract
This article provides a general overview of physical and mechanical properties, alloy compositions, applications, and product forms of cobalt-base alloys as wear-resistant, corrosion-resistant, and/or heat-resistant materials. The discussion is largely focused on cobalt-base alloys for wear resistance, as this is the single largest application area of cobalt-base alloys.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006402
EISBN: 978-1-62708-192-4
... and reliability in terms of exponential distribution, Weibull distribution, and gamma distribution. It concludes with information on the effects of interaction on failure probability. friction wear tribological testing tribographs transition diagrams tribomaps reliability Weibull distribution gamma...
Abstract
The influence of friction and wear on the function and structure of tribological systems is determined by various types of tribological tests. This article introduces the general categories of tribological testing and describes the basic objectives of testing. It reviews the results of tribological tests, where the system-dependent characteristics of friction and wear data can be expressed in different forms, such as tribographs, transition diagrams, and tribomaps. A summary of various methods of surface analysis is presented in a table. The article discusses the relationship between wear and reliability in terms of exponential distribution, Weibull distribution, and gamma distribution. It concludes with information on the effects of interaction on failure probability.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006667
EISBN: 978-1-62708-213-6
... this is highly dependent on instrument design parameters, such as flight path), and gamma discrimination (the ability to distinguish between neutrons and gamma rays). For the purposes of neutron diffraction, detectors measure events, that is, neutron counts, but are not sensitive to neutron energies. In reactor...
Abstract
This article provides a brief introduction to neutron diffraction as well as its state-of-the-art capabilities. The discussion covers the general principles of the neutron, neutron-scattering theory, generation of neutrons, types of incident radiation, and purposes of single-crystal neutron diffraction, powder diffraction, and pair distribution function analysis. The relationship between detector space and reciprocal space are presented. Various factors involved in sample preparation, calibration, and techniques used for analyzing diffraction data are described. The article also presents application examples and possible future developments in neutron diffraction.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006449
EISBN: 978-1-62708-190-0
... for measuring tube dimensions. Courtesy of LAP Laser Radiographic Inspection Radiographic inspection requires exposing a testpiece to penetrating radiation (x-rays for thinner and lower-atomic-number elements, and gamma rays for thicker and higher-atomic-number elements). A detector is positioned...
Abstract
This article provides information on the application of nondestructive examination (NDE) technologies to tube and pipe products. These include modeling and simulation methods, eddy-current methods, magnetic methods, acoustic methods, and physical methods. A summary of nondestructive examination methods based on flaw type and product stage is presented in a table. The article also discusses in-service inspection of tubular products and presents an example that illustrates the importance of nondestructive testing (NDT) for welds in austenitic stainless steel tubing.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6
1