Skip Nav Destination
Close Modal
Search Results for
gamma distribution
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 243 Search Results for
gamma distribution
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006402
EISBN: 978-1-62708-192-4
... and reliability in terms of exponential distribution, Weibull distribution, and gamma distribution. It concludes with information on the effects of interaction on failure probability. friction wear tribological testing tribographs transition diagrams tribomaps reliability Weibull distribution gamma...
Abstract
The influence of friction and wear on the function and structure of tribological systems is determined by various types of tribological tests. This article introduces the general categories of tribological testing and describes the basic objectives of testing. It reviews the results of tribological tests, where the system-dependent characteristics of friction and wear data can be expressed in different forms, such as tribographs, transition diagrams, and tribomaps. A summary of various methods of surface analysis is presented in a table. The article discusses the relationship between wear and reliability in terms of exponential distribution, Weibull distribution, and gamma distribution. It concludes with information on the effects of interaction on failure probability.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006094
EISBN: 978-1-62708-175-7
... Abstract Superalloys are predominantly nickel-base alloys that are strengthened by solid-solution elements including molybdenum, tungsten, cobalt, and by precipitation of a Ni 3 (Al, Ti) type compound designated as gamma prime and/or a metastable Ni 3 Nb precipitate designated as gamma double...
Abstract
Superalloys are predominantly nickel-base alloys that are strengthened by solid-solution elements including molybdenum, tungsten, cobalt, and by precipitation of a Ni 3 (Al, Ti) type compound designated as gamma prime and/or a metastable Ni 3 Nb precipitate designated as gamma double prime. This article provides a discussion on the conventional processing, compositions, characteristics, mechanical properties, and applications of powder metallurgy (PM) superalloys. The conventional processing of PM superalloys involves production of spherical prealloyed powder, screening to a suitable maximum particle size, blending the powder to homogenize powder size distribution, loading powder into containers, vacuum outgassing and sealing the containers, and consolidating the powder to full density. PM superalloys include Rene 95, IN-100, LC Astroloy, Udimet 720, N18, ME16, RR1000, Rene 88DT, PA101, MERL 76, AF2-1DA, Inconel 706, AF115, and KM4. The article reviews specialized PM superalloy processes and technical issues in the usage of PM superalloys.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001050
EISBN: 978-1-62708-161-0
... Abstract The initial cast superalloy developments in the United States centered on cobalt-base materials. Nickel-base and nickel-iron-base superalloys owe their high-temperature strength potential to their gamma prime content. For polycrystalline superalloy components, high-temperature strength...
Abstract
The initial cast superalloy developments in the United States centered on cobalt-base materials. Nickel-base and nickel-iron-base superalloys owe their high-temperature strength potential to their gamma prime content. For polycrystalline superalloy components, high-temperature strength is affected by the condition of the grain boundaries and, in particular, the grain-boundary carbide morphology and distribution. Vacuum induction melting offers more control over alloy composition and homogeneity than all other vacuum melting processes. The primary purification reaction occurring in the process is the removal of melt contained oxygen by means of a reaction with carbon to form carbon monoxide. A number of casting processes can provide near-net shape superalloy cast parts, but essentially all components are produced by investment casting. The solidification of investment cast superalloy components is precisely controlled so that the microstructure, which ultimately determines mechanical properties, remains consistent. Heat treating cast superalloys involves homogenization and solution heat treatments or aging heat treatments.
Image
Published: 01 January 2005
Fig. 5 Distribution of δ (Ni 3 Nb) phase (dark) in alloy 718 (N07718) forging after heat treatment. (a) Alloy 718 forging, solution annealed at 955 °C (1750 °F) for 1 h, air cooled; aged at 718 °C (1325 °F) for 8 h, furnace cooled to 621 °C (1150 °F) in 10 h. Structure consists of patches
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001416
EISBN: 978-1-62708-173-3
... Abstract This article focuses on the physical metallurgy and weldability of four families of titanium-base alloys, namely, near-alpha alloy, alpha-beta alloy, near-beta, or metastable-beta alloy, and titanium based intermetallics that include alpha-2, gamma, and orthorhombic systems...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006261
EISBN: 978-1-62708-169-6
... 1 Phases in nickel alloys Phase name Chemical composition Description Gamma (γ) matrix Nickel-base solid solution This face-centered cubic (fcc) nonmagnetic phase is the matrix in all nickel-base alloys and usually contains a high percentage of solid-solution elements, such as cobalt...
Abstract
This article provides information on nickel alloying elements, and the heat treatment processes of various nickel alloys for applications requiring corrosion resistance and/or high-temperature strength. These processes are homogenization, annealing, solution annealing, solution treating, stabilization treatment, age hardening, stress relieving, and stress equalizing. Discussion of furnaces, fixtures, and atmospheres is included. Nickel alloys used for the heat treatment processes include corrosion-resistant nickel alloys, heat-resistant nickel alloys, nickel-beryllium alloys, special-purpose alloys such as nitinol shape memory alloys, low-expansion alloys, electrical-resistance alloys and soft magnetic alloys. Finally, the article focuses on heat treatment modeling for selecting the appropriate heat treatment process.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... spectroscopy PGAA prompt gamma-ray activation analysis PIXE particle-induced x-ray emission RBS Rutherford backscattering spectrometry RDF radial distribution function (analysis) RHEED reflection high-energy electron diffraction SAD selected-area diffraction...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003238
EISBN: 978-1-62708-199-3
... of radiation in radiographic inspection, including X-rays and gamma rays. It deals with the characteristics that differentiate neutron radiography from X-ray or gamma-ray radiography. The geometric principles of shadow formation, image conversion, variation of attenuation with test-piece thickness, and many...
Abstract
Radiography is a nondestructive-inspection method that is based on the differential absorption of penetrating radiation by the part or test piece (object) being inspected. This article discusses the fundamentals and general applications of radiography, and describes the sources of radiation in radiographic inspection, including X-rays and gamma rays. It deals with the characteristics that differentiate neutron radiography from X-ray or gamma-ray radiography. The geometric principles of shadow formation, image conversion, variation of attenuation with test-piece thickness, and many other factors that govern the exposure and processing of a neutron radiograph are similar to those for radiography using X-rays or gamma rays.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... are exposed to elevated temperatures for long times. Typical metallurgical instabilities for turbine blades include carbide coarsening, gamma-prime formation, and hot corrosion. For steel alloys used for tubes and piping, carbide spheroidization and coalescence, sigma-phase formation, sensitization...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006367
EISBN: 978-1-62708-192-4
... on the widely used form known as carbon black (CB) and shows how to deal with friction and wear of polymers and composites when gamma irradiation is involved. It also discusses the role of graphite in composite materials, which is widely used as a dry lubricant. The article examines the tribology of carbon...
Abstract
This article discusses the importance of friction and wear and the role of lubricants in composites. It highlights the progress and developments in using different forms of carbon allotropes in composites for improved friction and wear performance of materials. The article focuses on the widely used form known as carbon black (CB) and shows how to deal with friction and wear of polymers and composites when gamma irradiation is involved. It also discusses the role of graphite in composite materials, which is widely used as a dry lubricant. The article examines the tribology of carbon nanotubes (CNTs) as components in composite materials. It also highlights some of the most pronounced examples of graphene use as a reinforcement agent for improving tribological performance in composite matrices. The article concludes with a discussion on the progress of research in diamond-containing composites.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003999
EISBN: 978-1-62708-185-6
... processing of all nickel-base alloys occurs below the solidus temperature and may occur above or below the solvus temperature of various precipitate phases for each respective alloy. Thermomechanical processing steps that occur below solvus temperatures are often designed to maintain fine gamma grain sizes...
Abstract
Forging of nickel-base alloys results in geometries that reduce the amount of machining to obtain final component shapes and involves deformation processing to refine the grain structure of components or mill products. This article discusses the heating practice, die materials, and lubricants used in nickel-base alloys forging. It describes two major forging processing categories for nickel-base alloys: primary working and secondary working categories. Primary working involves the deformation processing and conversion of cast ingot or similar bulk material into a controlled microstructure mill product, such as billets or bars, and secondary working refers to further forging of mill product into final component configurations.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009213
EISBN: 978-1-62708-176-4
... Ref 1 for tabular values of the gamma function. The variance of a Weibull population is: (Eq 23) Variance = α 2 [ Γ ( 1 + 2 β ) − Γ 2 ( 1 + 1 β ) ] Population Percentiles The p th percentile of a Weilbull distribution, Q p...
Abstract
The six types of statistical distributions are normal distribution, log normal distribution, Weibull distribution, exponential distribution, binomial distribution, and Poisson distribution. This article discusses the applicability of each distribution, providing information on the probability density function, cumulative distribution function, population mean and variance, and parameter and percentile estimation.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005676
EISBN: 978-1-62708-198-6
... a specific polymer family. The molecular weight distribution of thermoplastics can be more fully evaluated using gel permeation chromatography. The molecular weight is described in terms of statistical averages: M n = number average, M w = weight average, and M z = z -average. A typical...
Abstract
Polymers offer a wide range of choices for medical applications because of their versatility in properties and processing. This article provides an overview of polymeric materials and the characteristics that make them a unique class of materials. It describes the ways to classify polymers, including the polymerization method, how the material deforms, or molecular origin or stability. The article contains tables that list common medical polymers used in medical devices. It explains the medical polymer selection criteria and regulatory aspects of materials selection failure analysis and prevention. Failure analysis and prevention processes to determine the root cause of failures that arise at different stages of the product life cycle are reviewed. The article describes the mechanisms of plastic product failure analysis. It discusses the trends in the use of medical polymers, such as high-performance polymers for implants, tissue engineering, and bioresorbable polymers.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006445
EISBN: 978-1-62708-190-0
..., and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density...
Abstract
The potential for introducing defects during processing becomes greater as the relative density of pressed and sintered powder metallurgy (PM) parts increases and more multilevel parts with complex geometric shapes are produced. This article discusses the potential defects in pressed and sintered PM parts: density variations, compaction and ejection cracks, microlaminations, poor degree of sintering, and voids from prior lubricant agglomerates. It describes the various methods applicable to green compacts: direct-current resistivity testing, radiographic techniques, computed tomography, and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density determination, and visual inspection.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003764
EISBN: 978-1-62708-177-1
... times. Mix 1 cm 3 Fe 3 O 4 with 30 mL of a 0.3% soap solution. Add 1 drop of this suspension to the sample surface and cover with a cover glass for uniform distribution. Examine under the microscope with bright-field or dark-field illumination. The Fe 3 O 4 particles will decorate the domain walls...
Abstract
This article is a comprehensive collection of tables listing: dangerous reactions of chemicals and designations of etchants; chemical-polishing solutions for irons and steels and nonferrous materials; attack-polishing solutions, macrostructure etchants for iron and steel; and major microstructure etchants for common phases and constituents in ferrous materials.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002363
EISBN: 978-1-62708-193-1
... positron has a higher probability of annihilating with a lower energy conduction electron. This trend is reflected as a narrowing of the energy distribution about the value of 511 keV. If the electron-positron center of the mass was stationary, then 511 keV would be the gamma ray energy. Thus, the Doppler...
Abstract
This article describes the test techniques that are available for monitoring crack initiation and crack growth and for obtaining information on fatigue damage in test specimens. These techniques include optical methods, the compliance method, electric potential measurement, and gel electrode imaging methods. The article discusses the magnetic techniques that are primarily used as inspection techniques for detecting fatigue cracks in structural components. It details the principles and operation procedures of the liquid penetrant methods, positron annihilation techniques, acoustic emission techniques, ultrasonic methods, eddy current techniques, infrared techniques, exoelectron methods, and gamma radiography. The article explains the microscopy methods used to determine fatigue crack initiation and propagation. These include electron microscopy, scanning tunneling microscopy, atomic force microscopy, and scanning acoustic microscopy. The article also reviews the X-ray diffraction technique used for determining the compositional changes, strain changes, and residual stress evaluation during the fatigue process.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001267
EISBN: 978-1-62708-170-2
... is the amorphous structure in the as-plated condition and the ability to heat treat the deposit by precipitation hardening to produce a crystalline structure. There are three nonequilibrium phases for the as-plated electroless nickel deposit: beta, beta + gamma, and gamma. The beta phase is present up...
Abstract
Metallic nonelectrolytic alloy coatings produced from aqueous solutions are commercially used in several industries, including electronics, aerospace, medical, oil and gas production, chemical processing, and automotive. Nonelectrolytic coating systems use two types of reactions to deposit metal onto a part: electroless and displacement. This article explains the various types of electroless and dispersion alloy coating systems. It provides information on the processing of parts, process control, deposit analysis, and equipment used for coating nonelectrolytic displacement alloys. The article concludes with a discussion on the safety and environmental concerns associated with nonelectrolytic deposition processes.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006667
EISBN: 978-1-62708-213-6
... neutron diffraction, powder diffraction, and pair distribution function analysis. The relationship between detector space and reciprocal space are presented. Various factors involved in sample preparation, calibration, and techniques used for analyzing diffraction data are described. The article also...
Abstract
This article provides a brief introduction to neutron diffraction as well as its state-of-the-art capabilities. The discussion covers the general principles of the neutron, neutron-scattering theory, generation of neutrons, types of incident radiation, and purposes of single-crystal neutron diffraction, powder diffraction, and pair distribution function analysis. The relationship between detector space and reciprocal space are presented. Various factors involved in sample preparation, calibration, and techniques used for analyzing diffraction data are described. The article also presents application examples and possible future developments in neutron diffraction.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003744
EISBN: 978-1-62708-177-1
.... 11 Gamma fiber plot of rolled steel (γ-fiber is for {111} ∥ ND) Finally, skeleton line plots are often shown to indicate relative intensities of specific texture components. These are similar to fiber plots in that only one dimension of the orientation distribution is indicated. The skeleton...
Abstract
This article describes the mechanisms involved in creating texture for various metal-fabrication processes, namely, solidification, deformation, recrystallization and grain growth, thin-film deposition, and imposition of external magnetic fields. It discusses two experimental and analytical approaches for experimental determination of texture: one using classical diffraction and pole figure measurement techniques and the other using individual orientation measurements. The article also provides information on microtexture, grain-boundary character, and texture gradients. It concludes with information on texture evolution through modeling.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003737
EISBN: 978-1-62708-177-1
... the gamma prime phase, gamma double prime phase, eta phase, laves phase, sigma phase, mu phase, and chi phase in wrought heat-resistant alloys. cobalt-base heat-resistant alloys ferrite grinding heat-resistant alloys iron-base heat-resistant alloys macroetching magnetic etching metallography...
Abstract
This article discusses the specimen preparation of three types of cast and wrought heat-resistant alloys: iron-base, nickel-base, and cobalt-base. Specimen preparation involves sectioning, mounting, grinding, polishing, and etching. The article illustrates the microstructural constituents of cast and wrought heat-resistant alloys. It describes the identification of ferrite by magnetic etching. The transmission electron microscopy examination of the fine strengthening phases in wrought alloys and bulk extraction in heat-resistant alloys are included. The article also reviews the gamma prime phase, gamma double prime phase, eta phase, laves phase, sigma phase, mu phase, and chi phase in wrought heat-resistant alloys.
1