Skip Nav Destination
Close Modal
Search Results for
galvanized steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 605 Search Results for
galvanized steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 January 2005
Image
Published: 01 January 2006
Fig. 6 Effect of zinc coating weight on service life of galvanized steel sheet in various environments. Service life is measured in years to the first appearance of significant rusting.
More
Image
Published: 01 January 2005
Image
Published: 01 January 2003
Fig. 4 Corrosion of galvanized steel in rural (State College, PA), marine (Sandy Hook, NJ), and industrial (Pittsburgh, PA) atmospheres. Source: Ref 8
More
Image
Published: 01 January 2003
Fig. 2 Service life versus coating thickness for hot dip galvanized steel in various atmospheres. Service life is defined as the time to 5% rusting of the steel surface.
More
Image
in Metallography and Microstructures of Low-Carbon and Coated Steels
> Metallography and Microstructures
Published: 01 December 2004
Fig. 45 Microstructure of a hot dipped galvanized coating on a low-carbon steel sheet. Etched in 1% nitric acid/amyl alcohol. 1000×
More
Image
Published: 01 December 2004
Fig. 29 Hot dip galvanized 1006, UNS G10060, steel. The galvannealed process produced a coating with no free zinc. Coating weight: 275 g/m 2 (0.9 oz/ft 2 ). Etchant: amyl-nital. 550×
More
Image
Published: 01 December 2004
Fig. 30 Hot dip galvanized 1006, UNS G10060, steel, without annealing. Zinc-iron compounds are present at the interface, while the remainder of the coating is free zinc. Coating weight: 320 g/m 2 (1.05 oz/ft 2 ). Etchant: amyl-nital. 550×
More
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003808
EISBN: 978-1-62708-183-2
... the Sendzimir process and the Cook-Norteman process, which are the two commercial processes that are used for almost all hot-dip galvanized sheet steel in the United States. The article provides a discussion on the aqueous corrosion and atmospheric corrosion of galvanized steel and aluminized steel, as well...
Abstract
From the standpoint of corrosion protection of iron and steel, metallic coatings can be classified into two types: noble coatings and sacrificial coatings. This article focuses on hotdipped zinc, aluminum, zinc-aluminum alloy and aluminum-zinc alloy coatings. It discusses the Sendzimir process and the Cook-Norteman process, which are the two commercial processes that are used for almost all hot-dip galvanized sheet steel in the United States. The article provides a discussion on the aqueous corrosion and atmospheric corrosion of galvanized steel and aluminized steel, as well as the intergranular corrosion of galvanized steel.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003689
EISBN: 978-1-62708-182-5
...Abstract Abstract This article provides a discussion on the two basic steps of the batch hot dip galvanizing process: surface preparation and galvanizing. It describes the factors affecting coating thickness and coating structure. The mechanical properties of the coating and steel substrate...
Abstract
This article provides a discussion on the two basic steps of the batch hot dip galvanizing process: surface preparation and galvanizing. It describes the factors affecting coating thickness and coating structure. The mechanical properties of the coating and steel substrate are also discussed. The article also provides information on the various factors that should be considered before galvanizing a material. It examines the performances of galvanized coatings in corrosion service. The joining of galvanized structural members by bolting and welding is also discussed. The article describes the synergistic effects of galvanized and painted systems. It explains the applications of hot dip galvanized steel. The article concludes with information on pertinent galvanizing specifications under the authority of the American Society for Testing and Materials.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006014
EISBN: 978-1-62708-172-6
...Abstract Abstract This article reviews the various substrates for coatings, namely, steel, cast iron, galvanized steel, aluminum, stainless steel, nonferrous metals, concrete, and wood. General guidance for surface preparation and coating selection is provided along with unique requirements...
Abstract
This article reviews the various substrates for coatings, namely, steel, cast iron, galvanized steel, aluminum, stainless steel, nonferrous metals, concrete, and wood. General guidance for surface preparation and coating selection is provided along with unique requirements for the particular substrate(s).
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004162
EISBN: 978-1-62708-184-9
.... Corrosion-resistant sheet metals, such as electrogalvanized steel, hot dip galvanized steel, and hot dip galvannealed steel, are reviewed. The article provides information on the paint and sealant systems for corrosion control in automotive body applications. automotive body applications corrosion...
Abstract
This article discusses the commonly encountered forms of automotive body corrosion. The corrosion forms include general or uniform corrosion, cosmetic or under-film corrosion, galvanic corrosion, crevice corrosion, poultice or under-deposit corrosion, and pitting corrosion. Corrosion-resistant sheet metals, such as electrogalvanized steel, hot dip galvanized steel, and hot dip galvannealed steel, are reviewed. The article provides information on the paint and sealant systems for corrosion control in automotive body applications.
Image
Published: 01 January 2005
Fig. 17 The obvious bleed of rust from a carbon steel nut used in an otherwise galvanized steel structure is the result of careless selection by a fitter. The inspector or supervisor missed the error; the rust is not apparent until time (weeks to months) allows the steel to corrode. Control: Use
More
Image
Published: 01 January 2003
Fig. 5 Illustration of the mechanism of corrosion for (a) painted steel and (b) painted galvanized steel. (a) A void in the paint results in rusting of the steel, which undercuts the paint coating and results in further coating degradation. (b) A void in the coating of a painted galvanized steel
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003678
EISBN: 978-1-62708-182-5
...Abstract Abstract Phosphating is used in the metalworking industry to treat substrates like iron, steel, galvanized steel, aluminum, copper, and magnesium and its alloys. This article provides an overview of the types, uses, and theory of phosphate coatings and their formation. It also...
Abstract
Phosphating is used in the metalworking industry to treat substrates like iron, steel, galvanized steel, aluminum, copper, and magnesium and its alloys. This article provides an overview of the types, uses, and theory of phosphate coatings and their formation. It also discusses the composition of phosphating baths, phosphate layers, and their analysis, as well as the process hardware necessary to realize these treatments. A summary of the different types of phosphate layers is tabulated, and the chemical formulas for a number of different phosphate compounds that are theoretically possible in crystalline phosphate layers are illustrated. The article presents four chemically important phosphating steps, namely, cleaning, activation or conditioning, phosphating, and posttreatment plus standard rinsing. It describes the physical and chemical properties by gravimetric analysis, chemical analysis, structure and morphology, thermal analysis, and alkaline resistance.
Image
Published: 01 January 2005
Fig. 26 Long-term contact with water (one side) and wet soils (other side) resulted in through-wall attack of the metal piling adjacent to a canal. Loss of galvanized steel occurred over many years (possibly 20 to 25 years), with subsequent perforation along areas where the claylike soil had
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001012
EISBN: 978-1-62708-161-0
... sheets for buildings, silos, grain bins, heat exchangers, hot water tanks, pipe, culverts, conduits, air conditioner housings, outdoor furniture, and mail boxes. On all steel parts, galvanizing provides long-lasting, economical protection against a wide variety of corrosive elements in the air, water...
Abstract
Steel sheet is often coated in coil form prior to fabrication to save time, reduce production costs, and streamline operations. This article examines the most common precoating methods and provides a metallurgical understanding of how they impact the manufacturability, performance, and service life of the host material. The article covers metallic coatings, including zinc, aluminum, zinc-aluminum alloys, tin, and terne; pretreatment or phosphate coatings; and preprimed and painted finishes based on organic coatings.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003830
EISBN: 978-1-62708-183-2
... of 10 to 100 times slower than steel ( Ref 2 ). A unique feature of zinc coatings is the extra protection provided by galvanic action between the zinc coating and the substrate steel at places where the coating is damaged and the steel is exposed. The many types of zinc and zinc alloy coatings can...
Abstract
Zinc is one of the most used metals, ranking fourth in worldwide production and consumption behind iron, aluminum, and copper. This article commences with an overview of the applications of zinc that can be divided into six categories: coatings, casting alloys, alloying element in brass and other alloys, wrought zinc alloys, zinc oxide, and zinc chemicals. It discusses the corrosion and electrochemical behavior of zinc and its alloys in various environments, particularly in atmospheres in which they are most widely used. The article tabulates the corrosion rates of zinc and zinc coatings immersed in various types of waters, in different solutions in the neutral pH range, and in soils at different geographic locations in the United States. It concludes with information on the forms of corrosion encountered in zinc coatings, including galvanic corrosion, pitting corrosion, and intergranular corrosion.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001272
EISBN: 978-1-62708-170-2
...Abstract Abstract This article commences with a description of the applications of galvanized coatings and provides information on metallurgical characteristics, such as coating thickness and alloying elements. It examines the effect of galvanizing process on the mechanical properties of steels...
Abstract
This article commences with a description of the applications of galvanized coatings and provides information on metallurgical characteristics, such as coating thickness and alloying elements. It examines the effect of galvanizing process on the mechanical properties of steels and briefly describes the cleaning procedures of iron and steel pieces, before galvanizing. The article discusses the different types of conventional batch galvanizing practices. Information on the galvanizing of silicon-killed steels is also presented. The article concludes with helpful information on batch galvanizing equipment and galvanizing post treatments.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003688
EISBN: 978-1-62708-182-5
... coatings, 55Al-Zn coating, 95Zn-Al coating, and aluminized coatings. continuous hot dip coating galvanized coating galvannealed coating aluminized coating HOT-DIP COATING is a process that primarily refers to the application of a low melting point metal as a coating on steel wherein...
Abstract
This article describes the basic principles, processing steps, and benefits of continuous hot dip coatings. It provides useful information on the principal types of coatings applied in the hot-dip process. The types of coatings include galvanized coatings, galvannealed coatings, 55Al-Zn coating, 95Zn-Al coating, and aluminized coatings.