1-20 of 290 Search Results for

galvanic interaction

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 31 December 2017
Fig. 17 Model of galvanic interactions among two minerals and grinding media. Source: Ref 63 More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003629
EISBN: 978-1-62708-182-5
... or stainless steel affected by galvanic interaction are discussed. The article contains a table that lists the results of laboratory marked ball wear tests for three types of steel balls in wet grinding of magnetic taconite. It also provides information on the mechanism of electrochemical interaction...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003828
EISBN: 978-1-62708-183-2
... as galvanic interactions between uranium, its alloys, and other metals. The article provides information on the atmospheric corrosion of uranium based on oxidation in dry air or oxygen, water vapor, and oxygen-water vapor mixtures depending upon particular storage conditions. The mechanism and morphology...
Image
Published: 01 January 2003
Fig. 2 Corrosion model for grinding balls in ore slurry in aqueous medium. (a) Differential abrasion cell. (b) Galvanic interaction cell. Source: Ref 6 , 10 More
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
... lowered and may be protected. A galvanic current ( I g ) flowing between the coupled electrodes can be measured as an indicator of the strength of the interaction. The danger of galvanic interaction depends on the effect of the potential changes on the corrosion behavior. For the most common passivating...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003618
EISBN: 978-1-62708-182-5
... particles are well known sites for pit initiation, due to galvanic interaction with the surrounding matrix ( Ref 4 , 5 , 6 , 7 ). Depending on initial composition, some constituent particles are cathodic to the matrix, and others are anodic. Some exhibit a changing galvanic effect as the corrosion...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004128
EISBN: 978-1-62708-184-9
... Abstract Corrosion, fatigue, and their synergistic interactions are among the principal causes of damage to aircraft structures. This article describes aircraft corrosion fatigue assessment in the context of different approaches used to manage aircraft structural integrity, schedule aircraft...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003567
EISBN: 978-1-62708-180-1
... interactions between minerals and grinding media can occur, causing galvanic coupling that leads to increased corrosive wear. Corrosion and wear are also important in nonmining industries, such as the pulp and paper industry, where physical processing steps such as the grinding of wood chips are increasingly...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006415
EISBN: 978-1-62708-192-4
... white cast irons are used. Dependence on Galvanic Interaction between Minerals and Metal Alloys Electrochemical interactions between ore materials and grinding media can occur. Mineral particles with potentials that are nobler than those of steel grinding media become galvanically coupled...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003831
EISBN: 978-1-62708-183-2
... metals. Soldering achieves its strength from the wetting of the surface of the part to be joined. There is minimal interaction between the base metal and the solder alloy. A soldered joint is a mechanical joint and not a metallurgical joint. In most cases, due to the low temperatures involved, fluxes...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003663
EISBN: 978-1-62708-182-5
..., incorrect results would be obtained for the exposure of an isolated bronze mixed-material valve when the ultimate use is in a piping system made of a more noble metal that could accelerate the corrosion of the entire valve galvanically. When outside interactions of this type are possible, the interacting...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004220
EISBN: 978-1-62708-184-9
... to the posttensioning tendons is critical. This article does not address specific interactions with manufactured industrial chemicals, because this area is more reasonably the province of general or specific knowledge related to the particular chemical to which the building material will be exposed. Metal/Environment...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003603
EISBN: 978-1-62708-182-5
.... Gaseous corrosion is usually associated with high-temperature environments. Atmospheric corrosion is not considered a part of gaseous corrosion because the corrosion reaction occurs in a thin aqueous layer on the surface of the metal. Galvanic and stray current corrosion are not environment specific...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003675
EISBN: 978-1-62708-182-5
... Metallurgical Factors Chemical Composition As the galvanic series in seawater reveals, magnesium is anodic to all other structural metals and, as a result, galvanic interactions between magnesium and other metals are a serious concern. The influence of cathodic iron impurities on the corrosion...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004162
EISBN: 978-1-62708-184-9
... Abstract This article discusses the commonly encountered forms of automotive body corrosion. The corrosion forms include general or uniform corrosion, cosmetic or under-film corrosion, galvanic corrosion, crevice corrosion, poultice or under-deposit corrosion, and pitting corrosion. Corrosion...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003689
EISBN: 978-1-62708-182-5
..., the galvanizing kettle must be fabricated from ceramic materials since steel kettles cannot operate at this high a temperature due to interactions between zinc and iron. Coatings from high-temperature galvanizing are dull gray due to the growth of iron-zinc alloy layers. The process for galvanizing is the same...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004122
EISBN: 978-1-62708-184-9
... limits the state-of-the-art technology that can be incorporated, such as hot-dip galvanizing, electrodeposition coatings, and other technologies that the automotive industry uses. However, such technologies can often be found at subvendors, so leveraging their abilities allows manufacturers...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003839
EISBN: 978-1-62708-183-2
... corrosion that are discussed include: Galvanic corrosion between MMC constituents Chemical degradation of interphases and reinforcements Microstructure-influenced corrosion Processing-induced corrosion Galvanic Interaction between MMC Constituents Galvanic corrosion between...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003830
EISBN: 978-1-62708-183-2
... coatings immersed in various types of waters, in different solutions in the neutral pH range, and in soils at different geographic locations in the United States. It concludes with information on the forms of corrosion encountered in zinc coatings, including galvanic corrosion, pitting corrosion...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003117
EISBN: 978-1-62708-199-3
... of the stainless steel. If the stainless steel is passive in the environment, galvanic interaction with a more noble metal is unlikely to produce significant corrosion. If the stainless steel is active or only marginally passive, galvanic interaction with a more noble metal will probably produce sustained rapid...