1-20 of 112 Search Results for

galvanic coupling

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006049
EISBN: 978-1-62708-172-6
... Abstract The use of zinc in corrosion-protective coatings is due to its higher galvanic activity relative to that of steel. Pure zinc dust provides the best sacrificial protection to steel in a galvanic couple. Zinc-rich coatings can be subcategorized according to the type of binder material...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003819
EISBN: 978-1-62708-183-2
... corrosion: galvanic coupling, differential aeration, alkalinity, and stray currents. The resistance of lead and lead alloys to corrosion by a wide variety of chemicals is attributed to the polarization of local anodes caused by the formation of a relatively insoluble surface film of lead corrosion products...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001272
EISBN: 978-1-62708-170-2
... Abstract This article commences with a description of the applications of galvanized coatings and provides information on metallurgical characteristics, such as coating thickness and alloying elements. It examines the effect of galvanizing process on the mechanical properties of steels and...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003137
EISBN: 978-1-62708-199-3
... Galvanic corrosion Corrosion preferentially near a more cathodic metal Avoid electrically coupling dissimilar metals; maintain optimum ratio of anode to cathode area; maintain optimum concentration of oxidizing constituent in corroding medium Pitting Localized pits, tubercles; water line pitting...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003808
EISBN: 978-1-62708-183-2
... aqueous corrosion and atmospheric corrosion of galvanized steel and aluminized steel, as well as the intergranular corrosion of galvanized steel. aluminum alloy aqueous corrosion atmospheric corrosion metallic coatings intergranular corrosion Sendzimir process Cook-Norteman process zinc...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003142
EISBN: 978-1-62708-199-3
... environments, where titanium does not become passivated. Under reducing conditions, it has a galvanic potential similar to that of aluminum and undergoes accelerated corrosion when coupled to more noble metals. In most environments, titanium is the cathodic member of any galvanic couple. It may accelerate...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003139
EISBN: 978-1-62708-199-3
.... In some environments, a magnesium part can be severely damaged unless galvanic couples are avoided by proper design or surface protection. Therefore, this aspect is discussed in detail in the sub-section “Galvanic Corrosion” in this article. Table 1 Standard reduction potentials...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... galvanic current flows between them because of the inherent electrical potential difference between the two. The resulting reaction is referred to as couple action, and the electrically coupled system is known as a galvanic cell. The dissimilar metals/materials couple consists of an anode (which liberates...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003830
EISBN: 978-1-62708-183-2
... (lower than iron but not too low) allows zinc to act as a sacrificial anode when galvanically coupled with steel; the fast reaction kinetics allow a large galvanic protection distance; the large overpotential for hydrogen reaction is the reason that zinc is stable in aqueous environments; and the...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003822
EISBN: 978-1-62708-183-2
..., definitive repassivation potentials are often more difficult to derive by using reverse scan potentiodynamic techniques. Titanium alloys are widely used in hydrogen-containing environments and under conditions in which galvanic couples or cathodic charging (impressed current) causes hydrogen to be...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003820
EISBN: 978-1-62708-183-2
... the problem is the large difference in potential between magnesium and most alloys with which it is coupled. One can also attribute galvanic corrosion to the oxidation of magnesium due to the occurrence of the supporting cathodic reaction on another metal. Still another way in which to view galvanic...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003839
EISBN: 978-1-62708-183-2
... MMCs and were developed to create high-density materials. Uranium has a density of 18.9 g/cm 3 . Depleted uranium corrodes galvanically when coupled to tungsten fibers in air-exposed 3.5 wt% NaCl solutions at room temperature ( Ref 150 ). The open-circuit potential of tungsten fiber (−0.25 V SCE ) is...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003826
EISBN: 978-1-62708-183-2
... ferric ion (Fe 3+ ) in hydrochloric acid environments may pose a problem for the corrosion resistance of hafnium. Because of its high reactivity, hafnium will generally be the cathode in most galvanic couples. This will accelerate the corrosion of the anode component and allow hydrogen buildup in the...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003130
EISBN: 978-1-62708-199-3
..., stray electrical currents, or galvanic couples with more-anodic metals can be quite damaging. Good design and application practices must be observed to avoid these conditions. This includes selection of alloys appropriate for the conditions of the application. Among...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003828
EISBN: 978-1-62708-183-2
... extensively in the 1950s. U-0.75Ti is used when strength and ductility are important. The alloy is more resistant to corrosion than unalloyed uranium, but still suffers significant oxidation accompanied by hydrogen production in vapor and aqueous environments, especially when galvanically coupled to more...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003825
EISBN: 978-1-62708-183-2
... metals, including tantalum and niobium, seem to be particularly promising materials of construction for containing liquid metals. If tantalum is the cathode in a galvanic couple, hydrogen embrittlement can prove disastrous ( Ref 7 ). If tantalum is the...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003823
EISBN: 978-1-62708-183-2
... of noble metals may be reduced to metal plating on the surface of zirconium, creating the galvanic effect. When the pitting of zirconium is caused by an applied potential or galvanic coupling, the pit may continue to grow. At a constant potential above the pitting potential, the pit generation rate...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003815
EISBN: 978-1-62708-183-2
... galvanic cells with most other metals, protecting them by corroding sacrificially. Only magnesium and zinc are more anodic. Sacrificial corrosion of aluminum or cadmium is slight when these two metals are coupled in a galvanic cell, because of the small difference in electrode potential between them...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005307
EISBN: 978-1-62708-187-0
... considerations include the usage of furnaces and launder system, scrap return, inclusions in zinc alloys, fluxing of zinc alloys, and galvanizing fluxes. The article discusses the materials and lubricant selection, casting and die temperature control, and trimming process used in hot chamber die casting for zinc...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003843
EISBN: 978-1-62708-183-2
... and other embedded metals, chlorides, carbonation, galvanic corrosion, chemical attack, alkali-aggregate reaction, abrasion, erosion, and cavitation as well as many other factors. The article addresses the durability of concrete by two approaches, namely, the prescriptive approach and the performance...