1-20 of 299 Search Results for

galvanic cell

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003604
EISBN: 978-1-62708-182-5
... the electrode reactions are displaced from equilibrium and the electrode potential is no longer at the equilibrium potential. The article describes irreversible cell potential by using galvanic cells, electrolytic cells, and corrosion cells. metallic corrosion kinetics equilibrium electrode potential...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003579
EISBN: 978-1-62708-182-5
... and the Nernst equation. It describes galvanic cell reactions and corrosion reactions in an aqueous solution in an electrochemical cell. The article explores the most common cathodic reactions encountered in metallic corrosion in aqueous systems. The reactions included are proton reduction, water reduction...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003697
EISBN: 978-1-62708-182-5
...Abstract Abstract Cathodic protection is an electrochemical means of corrosion control in which the oxidation reaction in a galvanic cell is concentrated at the anode, which suppresses corrosion of the cathode in the same cell. This article provides a detailed discussion on the fundamentals...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003606
EISBN: 978-1-62708-182-5
...Abstract Abstract This article discusses the elements necessary for a galvanic cell operation. Detailed information on the possible corrosion reaction as a function of aqueous electrolyte concentration and pH, in the presence of certain ions, are provided using Pourbaix diagrams. A variety...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003709
EISBN: 978-1-62708-182-5
...Abstract Abstract This article presents common conventions and definitions in corrosion, electrochemical cells, cathodic protection (CP), electricity, and oxidation. Evans diagrams for impressed current CP in neutral or basic environment and galvanic or sacrificial CP, in both neutral or basic...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003656
EISBN: 978-1-62708-182-5
..., the galvanically coupled differential flow cell, galvanically coupled crevice cell, coupled multielectrode sensor, and electrochemical biofilm activity sensor. real-time monitoring localized corrosion electrochemical noise nonelectrochemical method galvanically coupled differential flow cell...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004135
EISBN: 978-1-62708-184-9
... electrode are usually strong oxidizing agents that accept electrons with ease, while forming negative ions or anions. The third component of a battery is the electrolyte that allows ionic conduction between the positive electrode and the negative electrode. The electrolyte in this type of galvanic cell need...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003629
EISBN: 978-1-62708-182-5
... abrasion cell ( Fig. 2a ), in which freshly abraded areas of the surface become anodes while unabraded areas become cathodes. Thus the corrosion reaction involves dissolution of iron by oxidation at freshly abraded areas and oxygen reduction at unabraded areas. Another type ( Fig. 2b ), involves galvanic...
Image
Published: 01 January 2003
Fig. 2 Corrosion model for grinding balls in ore slurry in aqueous medium. (a) Differential abrasion cell. (b) Galvanic interaction cell. Source: Ref 6 , 10 More
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003831
EISBN: 978-1-62708-183-2
...; or the different chemistries may form a galvanic cell, increasing the chances of corrosion. Various techniques used for ceramic brazing include (but are not limited to) active metal brazing techniques, nonmetallic glass brazing techniques, and eutectic brazing. In addition, much research is being done to develop...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004170
EISBN: 978-1-62708-184-9
... of moisture and contaminants, a galvanic cell will form. The metal with a more positive potential acts as the cathode, and the one with a less positive potential acts as the anode. The driving force of the galvanic corrosion is the potential difference between the two dissimilar metals. For the aluminum...
Book Chapter

Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006544
EISBN: 978-1-62708-183-2
... are combinations of bcc and fcc crystal structures. The resulting complex microstructure has two regions with two different energy levels that, when coupled in solution, produce galvanic cells with the different regions corroding at different rates. Understanding a material structure requires knowledge...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003672
EISBN: 978-1-62708-182-5
...Abstract Abstract This article discusses the factors affecting corrosion behavior. It describes galvanic corrosion and its protection methods. The article also provides information on coatings and inhibitors, which are used in corrosion protection. corrosion galvanic corrosion coatings...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003663
EISBN: 978-1-62708-182-5
... behavior of active-passive alloys. Creating a galvanic series is a matter of measuring the corrosion potential of various materials of interest in the electrolyte of interest against a reference electrode half-cell, such as saturated calomel. This procedure is described in Ref 2 . The details...
Image
Published: 01 January 2002
Fig. 4 Schematic diagram of the mechanism in an FeS corrosion cell created by the action of SRB. Iron sulfide sets up a galvanic couple with steel, sustained and extended by the further action of SRB. The bacteria use electrons from the corrosion process, possibly in the form of cathodic hydrogen More
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... determine what inspection and maintenance action, if any, should be taken. All corrosion reactions are electrochemical in nature and depend on the operation of electrochemical cells at the metal surface. This mechanism is discussed in the first section, “Galvanic Corrosion.” Galvanic corrosion applies...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
.... For the most common passivating implant metals, a potential shift in the positive direction may cause little or no difference in the corrosion rate, unless it causes the potential to reach the breakdown potential. Galvanic interaction may substantially intensify the attack in active corrosion cells...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005735
EISBN: 978-1-62708-171-9
..., “Corrosion Control for Marine- and Land-Based Infrastructure Applications” in this Volume, discusses galvanic cells and the difference between noble and sacrificial coatings. Coatings of interest to process industries are noble relative to the substrate. The galvanic couple formed by the contact of both...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003581
EISBN: 978-1-62708-182-5
... applicable to galvanic cells for aqueous solutions is discussed elsewhere in this Volume. Only those aspects that are different for molten salts are emphasized in this article. Thus, for the cell given in Eq 1 , the cell reactions are: (Eq 3, 4) Ag = Ag + + e −   1 2 Cl 2 + e...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... what inspection and maintenance action, if any, should be taken. All corrosion reactions are electrochemical in nature and depend on the operation of electrochemical cells at the metal surface. This mechanism is discussed in the first section, “Galvanic Corrosion,” in this article. Galvanic...