1-20 of 288 Search Results for

galling wear

Sort by
Image
Published: 15 January 2021
Fig. 10 Surface damage typical of galling wear on high-strength steel sheet material. Source: Ref 58 More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006420
EISBN: 978-1-62708-192-4
... Abstract Boronizing is a case hardening process for metals to improve the wear life and galling resistance of metal surfaces. Boronizing can be carried out using several techniques. This article discusses the powder pack cementation process for carrying out boronizing. It describes...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
... modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006425
EISBN: 978-1-62708-192-4
... Abstract This article discusses the tribology of three main sheet forming processes: deep drawing, bending, and shearing. For each process, the basic principle of the forming process is briefly explained. Tribological phenomena observed in each process, such as wear and galling, are presented...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003285
EISBN: 978-1-62708-176-4
... Abstract Surface damage from sliding contact is related to the adhesion of mating surfaces in contact. This article describes the methods for evaluation of surface damage caused by sliding contact. It defines adhesive wear in terms of asperity, cold welding, galling, scuffing, seizure, and wear...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005179
EISBN: 978-1-62708-186-3
... of forming, and the type of lubrication. Die wear also depends on process characteristics. For example, high localized pressures develop on the tools that produce wrinkles, which then may produce prohibitively high rates of wear and galling in the ironing stage. Wear characteristics also differ for shallow...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006372
EISBN: 978-1-62708-192-4
... selection for a particular wear mode. The corrosion modes include dry sliding, tribocorrosion, erosion, erosion-corrosion, cavitation, dry erosion, erosion-oxidation, galling and fretting. microstructure abrasion adhesive wear austenitic stainless steel corrosion resistance dry sliding duplex...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001323
EISBN: 978-1-62708-170-2
... galling wear Good Moderate/poor Excellent (a) Excellent (a) Good (a) Good (a) Chemical resistance Fair Good Excellent Excellent Good Excellent Coating stripping ability Good More difficult More difficult More difficult Difficult More difficult Fatigue loss, % As high as 60...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005140
EISBN: 978-1-62708-186-3
... wear; thick, moderately hard or strong metals cause the most rapid wear. The two major mechanisms of die wear in press-forming operations are abrasive wear and adhesive wear (i.e., galling). Galling involves a chemical or physical adhesion of the sheet materials to the tool, and it depends...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005148
EISBN: 978-1-62708-186-3
..., and the typical materials for punches and blank holders. The article describes the typical causes of wear (galling) of deep-drawing tooling. It analyzes the selection of a harder and more wear-resistant material, the application of a surface coating such as chromium plating to the finished tools, and surface...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009000
EISBN: 978-1-62708-186-3
... and die surfaces, among others. Die wear may take place in various forms, such as changes in radii, peeling off or wearing out of surface coatings, scratches, galling, and/or pitting of the die surfaces. In the past, due to lack of a theoretical formula for prediction of die wear rate, die surface...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003279
EISBN: 978-1-62708-176-4
... to a surface, strong adhesion is desirable, but in other instances, as in the seizure and galling of sliding bearings, strong adhesion is not desirable. Likewise, low friction might be desirable for a face seal but undesirable for a brake pad. A high rate of abrasive wear for a paper mill slitter-knife blade...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... of microscopic welding at the interface between two mutually soluble metals. Adhesion is a major contributor to sliding resistance (friction) and can cause loss of material at the surface (wear) or surface damage without a loss of material at the surface (e.g., galling or scuffing). Adhesive wear typically...
Book Chapter

Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... of microscopic welding at the interface between two mutually soluble metals. Adhesion is a major contributor to sliding resistance (friction) and can cause loss of material at the surface (wear) or surface damage without a loss of material at the surface (e.g., galling or scuffing). Adhesive wear typically...
Image
Published: 01 January 1994
Fig. 1 Electroless nickel-thallium-boron deposit. The hard columnar structure increases resistance to fretting wear and the ability of the deposit to retain oil. Additional lubrication is provided with the presence of thallium, which interferes with the galling process between nickel and iron. More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001442
EISBN: 978-1-62708-173-3
... Abstract Hardfacing is a form of surfacing that is applied for the purpose of reducing wear, abrasion, impact, erosion, galling, or cavitation. This article describes the deposition of hardfacing alloys by oxyfuel welding, various arc welding methods, laser welding, and thermal spray processes...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006390
EISBN: 978-1-62708-192-4
... range. They exhibit outstanding resistance to metal-to-metal wear, galling, abrasion, oxidation, and corrosion and are particularly suitable where lubrication is limited or absent. T-400C … bal 14 … 26 0.1 ≤1.5 ≤2.5 2.6 ≤0.5 … T-400C has enhanced oxidation and corrosion resistance...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001267
EISBN: 978-1-62708-170-2
.... The higher-boron coatings are used to provide a hard surface to prevent galling in iron and nickel wear applications. Electroless nickel-boron plating systems Table 3 Electroless nickel-boron plating systems Alloy Hardness, HK 100 Significant properties and applications Availability 0.1...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006837
EISBN: 978-1-62708-329-4
.... After disassembly, it was noted that the surface of the journals had been heavily scored, and the inside of the inner seal wear ring contained unique wear patterns ( Fig. 7 , 8 ). In one case, the seal wear ring had cracked ( Fig. 8 ). Fig. 7 Black arrows indicate galling damage. Note...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006428
EISBN: 978-1-62708-192-4
... interfaces Variable stator vane actuators Fretting wear and fretting fatigue, gross slip reciprocatory motion leading to galling and material loss. Fretting fatigue needs to be controlled. Gross slip reciprocatory motion can lead to galling unless controlled. Combustor Fuel nozzle connectors...