1-20 of 380 Search Results for

fusion bonding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006007
EISBN: 978-1-62708-172-6
... Abstract Functional fusion-bonded epoxy (FBE) coatings are used as external pipe coatings, base layer for three-layer pipe-coating systems, internal pipe linings, and corrosion coatings for concrete reinforcing steel (rebar). This article provides information on the chemistries of FBE, and...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003205
EISBN: 978-1-62708-199-3
... Abstract This article discusses different types of joining processes, including welding, brazing, soldering, mechanical fastening, and adhesive bonding. It examines two broad classes of welding: fusion welding and solid-state welding. The article discusses the process selection considerations...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003043
EISBN: 978-1-62708-200-6
... Abstract The structural efficiency of a composite structure is established by its joints and assembly. Adhesive bonding, mechanical fastening, and fusion bonding are three types of joining methods for polymer-matrix composites. This article provides information on surface treatment and the...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003021
EISBN: 978-1-62708-200-6
... of plastics, chemical treatment for adhesion, and tabulates the adhesive types for bonding plastics to plastics and plastics to nonplastics. The article briefly describes the welding processes of thermoplastics, including fusion welding (hot-tool, hot gas, extrusion, and focused infrared), friction...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
... Abstract Fusion-based additive manufacturing (AM) processes rely on the formation of a metallurgical bond between a substrate and a feedstock material. Energy sources employed in the fusion AM process include conventional arcs, lasers, and electron beams. Each of these sources is discussed...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001747
EISBN: 978-1-62708-178-8
... controlling temperature, pressure, and environment, which create adsorption and absorption of gases. Gases introduced into the material are commonly quantitatively determined using inert gas fusion. Inert gas fusion reverses the physical and chemical bonding between the gases and the metals to dissociate...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... Abstract This article discusses the principles of operation, equipment needed, applications, and advantages and disadvantages of various fusion welding processes, namely, oxyfuel gas welding, electron beam welding, stud welding, laser beam welding, percussion welding, high-frequency welding...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001332
EISBN: 978-1-62708-173-3
... Abstract Welding and joining processes are essential for the development of virtually every manufactured product. This article discusses the fundamentals of fusion welding processes, with an emphasis on the underlying scientific principles. It reviews the role of energy-source intensity and the...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006543
EISBN: 978-1-62708-290-7
... Abstract Powder bed fusion (PBF) of polymers is a collection of additive manufacturing processes that melt and fuse polymer in a powder bed. This article provides a complete suite of materials and processes involved in PBF of polymers. The discussion includes details of thermal and...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006563
EISBN: 978-1-62708-290-7
... Abstract This article focuses on powder bed fusion (PBF) of ceramics, which has the potential to fabricate functional ceramic parts directly without any binders or post-sintering steps. It presents the results of three oxide ceramic materials, namely silica, zirconia, and alumina, processed...
Book Chapter

Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005612
EISBN: 978-1-62708-174-0
... MATERIALS IN THE SOLID STATE can be an attractive alternative to fusion-welding processes. In fact, metals that are conventionally difficult to weld and combinations of dissimilar materials can only be welded using a solid-state process. The wide range of techniques that are available for solid-phase...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... between joined materials to form the soundest joints, just as welding processes do. The difference is that neither brazing nor soldering involve any melting (or fusion) of the base materials. Rather, bond formation occurs between the ever-solid substrates and a molten filler metal with a melting point...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006557
EISBN: 978-1-62708-290-7
... Abstract The formation of defects within additive-manufactured (AM) components is a major concern for critical structural and cyclic load applications. Thus, understanding the mechanisms of defect formation in fusion-based processes is important for prescribing the appropriate process...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006546
EISBN: 978-1-62708-290-7
... distribution. The second section covers polymer powder-bed sintering/ fusion, discussing the different levels of scale used to address modeling and the impact of process settings: thermodynamics at the powder-bed surface, consolidation of adjacent particles in the fusion process, and fusion and molecular-level...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001351
EISBN: 978-1-62708-173-3
... bonded even when conventional fusion welding techniques are metallurgically inappropriate, because of the formation of intermetallic compounds. Applications of explosive bonding are diverse and include the production of sandwiched metal for coinage (1965 to 1971), the more-sophisticated use of titanium...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001373
EISBN: 978-1-62708-173-3
... Abstract Thermite welding (TW) is a fusion welding process in which two metals become bonded after being heated by superheated metal that has experienced an aluminothermic reaction. This article describes the thermite welding principles by presenting equations of the aluminothermic reaction...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001466
EISBN: 978-1-62708-173-3
... the surfaces to be bonded with a different thermoplastic, which melts at a lower temperature than that in the basic laminate. Fusion bonding is then possible at a temperature low enough not to distort the part itself. It is well known that the adhesive bonding of metal structures...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005577
EISBN: 978-1-62708-174-0
... Abstract The article discusses the fundamentals of fusion welding processes with an emphasis on the underlying scientific principles. It describes how surface temperature varies on steel with surface power densities that range from 400 to 8000 W/cm2. The article illustrates the spectrum of...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001426
EISBN: 978-1-62708-173-3
...; arrows indicate fusion line. Source: Ref 8 Tungsten and tungsten alloys can be joined by welding (GTAW and EBW), brazing, diffusion bonding, and other joining techniques. Tungsten and its alloys are generally considered to have poor weldability, when compared with other refractory metals...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006301
EISBN: 978-1-62708-179-5
... Abstract This article describes some examples of the different welding processes for gray, ductile, and malleable irons. These processes include fusion welding, repair welding, shielded metal arc welding, gas metal arc welding, flux cored arc welding, gas tungsten arc welding, submerged arc...