Skip Nav Destination
Close Modal
Search Results for
fuselage stringers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 45 Search Results for
fuselage stringers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006604
EISBN: 978-1-62708-210-5
... Abstract Alloy 2055 is an Al-Cu-Li alloy developed as a replacement for high-strength 7xxx and 2xxx alloys in applications such as fuselage stringers and floor beams. This datasheet provides information on its key alloy metallurgy and illustrates the damage tolerance of 2055-T84 extrusions...
Abstract
Alloy 2055 is an Al-Cu-Li alloy developed as a replacement for high-strength 7xxx and 2xxx alloys in applications such as fuselage stringers and floor beams. This datasheet provides information on its key alloy metallurgy and illustrates the damage tolerance of 2055-T84 extrusions and 7xxx extrusions.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006742
EISBN: 978-1-62708-210-5
... aging practices ( Table 2 ). The T7751 and T77511 tempers were registered for plate and extruded products used on the McDonnell-Douglas C-17 military transport, and alloy 7150-T7751 extrusions were used for fuselage stringers on the Boeing 777 jetliner. Composition limits for aluminum alloys 7150...
Image
Published: 01 January 2006
Fig. 23 Straightening of stringer-reinforced fuselage shells for the Airbus Deutschland GmbH at Kugelstrahlzentrum Aachen GmbH. Source: Ref 21
More
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006610
EISBN: 978-1-62708-210-5
... Abstract Alloy 2198 is an Al-Cu-Li alloy that is used in combination with 2196-T8 stringers for the fuselage skins of the Bombardier C-Series. This datasheet provides information on composition limits of the alloy 2198 and provides a performance comparison of 2198-T8 and 2024-T351 alloys...
Image
Published: 01 January 2006
Fig. 26 Examples of local and widespread corrosion on fuselage structures. (a) Local corrosion involves nonadjacent frame bays. (b) Local corrosion—involves nonadjacent stringers. (c) Widespread corrosion—involves adjacent stringer frame bays. (d) Widespread corrosion—involves adjacent frame
More
Image
Published: 01 January 1996
Fig. 32 Test and predicted failing strains for three-stringer [ + 45/0/90/ + 30/ 0 ] s AS4/938 fuselage crown panel (76 by 213 cm)
More
Image
Published: 01 January 1996
Fig. 33 Test and predicted failing strains for five-stringer [ + 45/0/90/ + 30/ 0 ] s AS4/938 fuselage crown panel (160 by 348 cm)
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003410
EISBN: 978-1-62708-195-5
... machine was delivered to an aerospace company. The first company to implement fiber placement on a production aircraft was Boeing Helicopters. A U.S. government- funded program was conducted by Boeing and Hercules to develop the design and process for fiber placing the aft fuselage for the Bell/Boeing V...
Abstract
This article schematically illustrates a fiber placement system and provides information on the applications of fiber placement. It discusses materials and design considerations for fiber placement. The article provides information on techniques that can be used to eliminate areas of missing tows.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006609
EISBN: 978-1-62708-210-5
... Alloy 2196 ( Table 1 ) is a higher Li-containing alloy registered in 2000 for various aircraft extrusion parts. The alloy is considered in a standard T8 temper for a range of thinner parts such as seat rails and fuselage stiffeners, as well as thicker sections such as floor beams and wing stringers...
Abstract
Alloy 2196 is a higher Li-containing alloy registered in 2000 for various aircraft extrusion parts. This datasheet provides information on composition limits and applications of alloy 2196 and 2296 as well as processing effects on mechanical properties of 2196-T8511 extrusions. A performance comparison of 2196-T8511 extrusion with alloy 2024 is also presented.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006605
EISBN: 978-1-62708-210-5
... alloy 2065 corrosion resistance density mechanical properties Airware alloy 2065 (Alcan Engineered Products, Rio Tinto Group) is currently being tested as high-performance extrusions with improved performance for wing and fuselage structures. It is another Al-Cu-Li alloy with silver additions...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004169
EISBN: 978-1-62708-184-9
... (tail) skins, and wing, fuselage, and empennage stringers and chords. Fig. 2 Forms of corrosion in aircraft. (a) Exfoliation corrosion. (b) Microbiologically induced corrosion on fuel tank access door. (c) (d) Galvanic corrosion under aluminum-nickel bronze bushing Pitting Pitting...
Abstract
This article describes the commonly observed forms of airplane corrosion, namely: general corrosion, exfoliation corrosion, pitting corrosion, microbiologically induced corrosion, galvanic corrosion, filiform corrosion, crevice corrosion, stress-corrosion cracking, and fretting. It discusses the factors influencing airplane corrosion from the manufacturing perspective: design, manufacturing, and service-related factors. The article explains the collection of corrosion data and provides an overview of the implementation and evolution of airline corrosion prevention and control programs and directions being considered in the design for corrosion prevention of airplanes.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006715
EISBN: 978-1-62708-210-5
... properties weldability Alloy 6056 was introduced primarily for aerospace fuselage sheet as a lower density (2.72 g/cm 3 , or 0.098 lb/in. 3 ) substitute for alloy 2024. The composition of the alloy is similar to alloy 6013, but with a higher Si/Mg ratio and a small addition of Zn to improve corrosion...
Abstract
The extrusion and sheet alloy 6056 was developed to provide weldable thin extrusions with an excellent balance between high strength and corrosion resistance. This datasheet provides information on composition limits, processing effects on mechanical properties, and applications of this 6xxx series alloy. It provides a material performance comparison of aluminum alloys 6056-T6511 with 2024-T3511 and 6056-T8511 with 2024-T3511.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005132
EISBN: 978-1-62708-186-3
... materials. Typical Applications Aerospace Industry In the aircraft and aerospace industries, shot peen forming has been successfully used for many years to form numerically controlled milled components, such as airplane wings, stringer-strengthened fuselages (Alpha Jet, Airbus), or structural...
Abstract
Shot peen forming is a manufacturing process in which local compressive residual stresses form thin sheet metals and structural components in one or more dimensions. This article discusses the principle of the process with an emphasis on fundamental mechanisms. It presents the basic considerations in the simulation of shot peen forming and provides information on single impact and multiple-impact peening simulations. The article describes the equipment and tooling used in the process. It also analyzes the influence of process parameters on shot peen forming and illustrates possible shapes and contours, which are producible by shot peen forming. The article concludes with a table that presents typical peen forming applications in the aircraft and aerospace industries.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006745
EISBN: 978-1-62708-210-5
... , and material performance is compared with alloy 7175 in Figs. 1 and 2 . Alloy 7349-T6511 and T76511 thin extrusions are particularly suited for stiffening structures such as fuselage panels in the form of high-strength stringers. They are also recommended for seat tracks and floor beams, which require...
Abstract
The extrusion alloy 7349 was developed by Pechiney and introduced in 1994 to provide higher strength properties than incumbent 7x75 and 7150 alloys. This datasheet provides information on composition limits and processing effects on mechanical properties of this aluminum alloy. Performance comparisons of alloys 7349-T6511 with 7175-T76511 and 7349-T7651 with 7175-T77511 are also illustrated.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006606
EISBN: 978-1-62708-210-5
... xxx , 6 xxx , and 7 xxx aluminum alloys in applications such as statically and dynamically loaded fuselage structures, lower wing stringers, and stiffness dominated designs. Detailed performance data and technical details are available in the Aerospace Structural Materials Handbook. Alloy 2099...
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002416
EISBN: 978-1-62708-193-1
... are vertical tails of the Airbus A300-340 series and the Boeing 777 transports and the wings and fuselages of the B-2 bomber. NASA and its contractors have completed two of three phases of the Advanced Composite Technology (ACT) program to develop composite wings and fuselages for commercial transport...
Abstract
This article presents the damage tolerance criteria for military composite aircraft structures to safely operate the structures with initial defects or in-service damage. It describes the effects of defects, such as wrinkles in aircraft structures, and the reduction in compressive strength and tensile strength. The article reviews low velocity impacts in aircraft structures in terms of resin toughness, laminate thickness, specimen size and impactor mass, and post-impact fatigue. It explains the tension strength analysis, such as linear elastic fracture mechanics and R-curve methods, to predict the residual strength of the structures.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002392
EISBN: 978-1-62708-193-1
... and prevent cracks from propagating to failure. An example of a crack stopper is a stringer in a pressurized fuselage. The stringer reduces the amount of energy available for crack growth, slowing or stopping the advance of a crack that crosses it. Ideally, an aircraft designed according to fail-safe...
Abstract
This article describes two analysis methods that are used to determine the life of aircrafts: fatigue life and fracture mechanics methods. The life limiting factors that control the durability of the aircraft are also discussed. The article provides an overview of the various approaches to corrosion identification and prevention. These include safe-life, fail-safe, and damage tolerance approaches. The article discusses their application to the process of extending the life of aircraft structural components.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006262
EISBN: 978-1-62708-169-6
... test, ASTM G47. The RRA-treated alloys mainly find applications where the critical design criterion is compression strength. Examples of aircraft structures fabricated from these RRA alloys in what is termed the T77-type temper included upper wing panels, keel beams, extruded fuselage stringers...
Abstract
Retrogression and reaging (RRA) is an established form of postquench aging heat treatment. RRA treatments can be applied to precipitation-hardened aluminum alloys that are used in aerospace applications. This article provides information on the development background of RRA and the steps involved in the RRA treatments. It discusses the process descriptions, applications, microstructural consequences, and limitations of RRA. In addition, the article describes the influence of RRA on mechanical properties.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006516
EISBN: 978-1-62708-210-5
... a commercial success as a passenger plane as well as a cargo carrier ( Ref 19 ). Alclad 2024-T351 remained the alloy of choice for the fuselage of virtually every airplane built until the 1990s, when other 2 x 24 alloy variants became available. Fig. 5 1930s vintage Douglas DC-3 aircraft...
Abstract
The development of aluminum alloys has progressed along two tracks: heat treatable and non-heat treatable. The Aluminum Association alloy composition limits and product temper are defined for major alloying elements. This article summarizes the historical evolution of the different series of wrought aluminum alloys (1xxx to 8xxx) and discusses their applications based on the alloying system introduced by the Aluminum Association.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003455
EISBN: 978-1-62708-195-5
... wing structures is in transferring massive loads into or out of the stringers at manufacturing breaks. For typical average wing skin load intensities of 207 MPa (30 ksi), it is usual to have individual stiffener loads of 220 to 440 kN (50 to 100 kips) at the nacelle or the side of the fuselage. In most...
Abstract
This article discusses the requirements for designing repairable composite structures such as a honeycomb sandwich panel construction and integrally stiffened co-cured composite structures. It reviews the general and specific design guidelines for bolted or riveted repairs and adhesively bonded repairs of the composite structures. The article presents several examples to illustrate how these repairs can be achieved.
1