1-20 of 104

Search Results for fuselage sheet

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006610
EISBN: 978-1-62708-210-5
.... alloy composition aluminum alloy 2024-T351 aluminum alloy 2198 aluminum alloy 2198-T8 aluminum-copper-lithium alloys fuselage sheet fuselage skins performance characteristics; stringers Alloy 2198 is another Al-Cu-Li alloy ( Table 1 ) that offers improved stiffness with better corrosion...
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006722
EISBN: 978-1-62708-210-5
... and material toughness for various thicknesses of alloy 6156 clad T62 are illustrated. aluminum alloy 6156 aluminum-silicon-magnesium-copper-manganese weldable alloys damage tolerance fatigue crack growth fuselage sheet material toughness Alloy 6156 ( Table 1 ) is an Al-Si-Mg-Cu-Mn weldable...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006615
EISBN: 978-1-62708-210-5
... limits Element Limits Si 0.06 max Fe 0.12 max Cu 4.0–4.5 Mg 1.2–1.6 Mn 0.45–0.7 Ti 0.10 max Zn 0.15 max Cr 0.05 max Other (each), max 0.05 Other (total), max 0.15 Al bal Introduced in 1991, it was developed especially for aircraft fuselage sheet...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006715
EISBN: 978-1-62708-210-5
... properties weldability Alloy 6056 was introduced primarily for aerospace fuselage sheet as a lower density (2.72 g/cm 3 , or 0.098 lb/in. 3 ) substitute for alloy 2024. The composition of the alloy is similar to alloy 6013, but with a higher Si/Mg ratio and a small addition of Zn to improve corrosion...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006601
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy and applications of Alclad 2029. It contains tables that present statistically determined mechanical property minimums for Alclad 2029-T8 sheet and plate. The plane stress fracture toughness and fatigue crack growth resistance...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006604
EISBN: 978-1-62708-210-5
... Abstract Alloy 2055 is an Al-Cu-Li alloy developed as a replacement for high-strength 7xxx and 2xxx alloys in applications such as fuselage stringers and floor beams. This datasheet provides information on its key alloy metallurgy and illustrates the damage tolerance of 2055-T84 extrusions...
Image
Published: 01 January 2001
Fig. 2 An F-16 aircraft, illustrating the ventral fins, which are located on the bottom of the fuselage just aft of (behind) the wings. The ventral fins are now assembled from 6092/SiC/17.5p discontinuously-reinforced aluminum sheet material produced via a powder metallurgy process. More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006711
EISBN: 978-1-62708-210-5
... resistance is superior to that of 2 xxx and 7 xxx high-strength alloys. Alloy 6013-T651 plate and extrusions have high resistance to corrosion, comparable to that of 6061-T651 plate. Fuselage Skin Sheet A high damage-tolerant (HDT) version of Alclad 6013 sheet was developed as a replacement...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006741
EISBN: 978-1-62708-210-5
... Abstract The aluminum alloy 7099 is a Kaiser aluminum high-strength Al-Mg-Zn-Cu alloy with zirconium that offers a less quench-sensitive alloy for properties in thicker sections for airframe structures such as wing ribs, spars, and skins, as well as fuselage frames and floor beams...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003485
EISBN: 978-1-62708-195-5
... fins, which are located on the bottom of the fuselage just aft of (behind) the wings. The ventral fins are now assembled from 6092/SiC/17.5p discontinuously-reinforced aluminum sheet material produced via a powder metallurgy process. The original ventral fins were made of a built- up structure...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006516
EISBN: 978-1-62708-210-5
... 2524 Alloy 2524 was the next step in the evolution of the 2 x 24 family. It was developed especially for aircraft fuselage sheet, which requires high fracture toughness and fatigue crack growth resistance. The alloy uses a high-purity base (lower iron and silicon compared with earlier 2 x 24...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006742
EISBN: 978-1-62708-210-5
... aging practices ( Table 2 ). The T7751 and T77511 tempers were registered for plate and extruded products used on the McDonnell-Douglas C-17 military transport, and alloy 7150-T7751 extrusions were used for fuselage stringers on the Boeing 777 jetliner. Composition limits for aluminum alloys 7150...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006598
EISBN: 978-1-62708-210-5
... webs, ribs, and structural areas where stiffness, fatigue performance, and good strength are required. Sheet products, usually Alclad, are used extensively in commercial and military aircraft for fuselage skins, wing skins, and engine areas where elevated temperatures to 120 °C (250 °F) are often...
Book Chapter

By R. Kopp, J. Schulz
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005132
EISBN: 978-1-62708-186-3
... Abstract Shot peen forming is a manufacturing process in which local compressive residual stresses form thin sheet metals and structural components in one or more dimensions. This article discusses the principle of the process with an emphasis on fundamental mechanisms. It presents the basic...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002393
EISBN: 978-1-62708-193-1
..., but not all, of fuselage critical elements, this effect may be secondary to the cabin pressure. In the case of longitudinal cracking in the fuselage, the internal cabin pressure is the most important loading condition. For circumferential cracking on the crown of the fuselage skin, the primary loading would...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004169
EISBN: 978-1-62708-184-9
... 2024-T3/2524-T3 sheets or 2024-T351/2524-T351 plates are used on the pressurized fuselage. Cladding on the exterior skin of fuselage 2 xxx series and 7 xxx series alloys, which consists of 1230 and 7032 respectively, is provided for increased corrosion resistance. 2 xxx -T3 x alloys have relatively...
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006745
EISBN: 978-1-62708-210-5
... , and material performance is compared with alloy 7175 in Figs. 1 and 2 . Alloy 7349-T6511 and T76511 thin extrusions are particularly suited for stiffening structures such as fuselage panels in the form of high-strength stringers. They are also recommended for seat tracks and floor beams, which require...
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006740
EISBN: 978-1-62708-210-5
... corrosion cracking in aerospace applications such as wing-box ribs and spars; fuselage primary structural elements such as frames, bulkheads, windshield surrounds; and structural components in landing-gear bays. Plate product has excellent flatness, consistency, and low residual stress that facilitate...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
.... The small differences are indicated. A flying aircraft experiences both lift and drag. These loads on the aircraft are dependent on the design of the external parameters of the aircraft. These parameters include geometry, weight, shape of the wing, geometry of the fuselage, whether it is pressurized...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002416
EISBN: 978-1-62708-193-1
... are vertical tails of the Airbus A300-340 series and the Boeing 777 transports and the wings and fuselages of the B-2 bomber. NASA and its contractors have completed two of three phases of the Advanced Composite Technology (ACT) program to develop composite wings and fuselages for commercial transport...