1-20 of 64 Search Results for

functionally-graded hip implant

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... discusses specific problems associated with implant manufacturing processes and the consequent compromises in the properties of functionally graded implants. It describes the manufacturing of the functionally-graded hip implant by using the LENS process. The article reviews four different types of tissue...
Image
Published: 01 June 2012
Fig. 2 Schematic diagram illustrating the functionally graded femoral head and stem of a hip implant that can be fabricated using the LENS system More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006889
EISBN: 978-1-62708-392-8
... that materials used in hip replacements have a yield strength of at least 450 MPa (65 ksi) to withstand the body’s natural stresses; under this condition, CoCr is well suited for load-bearing and articulation implant site applications. The suggested tensile strength for a hip replacement material is at least 655...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005652
EISBN: 978-1-62708-198-6
... the dura and spinal cord. When the metallic devices and granuloma were removed, the patient achieved full return of function within three months. A device failure analysis study ( Ref 26 ) encompassing 57 implants showed wear to be present in 75% of the implants, while 39% showed evidence of corrosion...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004205
EISBN: 978-1-62708-184-9
... in fracture fixation devices and other implantable devices (for example, 13 to 15% Ni in type 316L implant-grade stainless steel). Many persons, particularly women, are sensitive to nickel ions and can develop a reaction to the presence of stainless steel devices under the skin, as commonly occurs in devices...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
... Abstract Titanium and its alloys have been used extensively in a wide variety of implant applications, such as artificial heart pumps, pacemaker cases, heart valve parts, and load-bearing bone or hip joint replacements or bone splints. This article discusses the properties of titanium and its...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005666
EISBN: 978-1-62708-198-6
... Graphical comparison of wear debris generated from different types of total hip arthroplasties (THAs) demonstrating that there is less debris generated by metal-on-metal implants than by metal-on-polymer articulation. UHMWPE, ultrahigh-molecular-weight polyethylene. Sources: Metal-polymer, Ref 9 ; ceramic...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005678
EISBN: 978-1-62708-198-6
... forms of the Austin Moore femoral implant was the fenestrations of the intramedullary stem, since it appeared that cancellous bone grew into the foramina to effect anchorage of the prosthesis. Total Hip Replacements Two English surgeons made outstanding contributions to the development of total...
Book Chapter

By Matthew Donachie
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
... are used as the ball in the articulating region of a hip joint, as bioactive coatings on implants, and in certain aspects of dental use—for example, as fillers or for porcelain enameling (a ceramic process). Carbon finds use in heart valves and dental implants. As for polymeric materials, silicone has been...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
.... Finally, the article discusses the fatigue properties of implant materials and the fractures of total hip joint prostheses. degradation fatigue properties fractures implant deficiencies internal fixation devices orthopedic implants prosthetic implants total hip joint prostheses...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005657
EISBN: 978-1-62708-198-6
... insidious, where a device can be functioning normally one moment and broken the next. It has been said that fatigue crack initiation and growth contributes to 80% of all engineering failures ( Ref 8 ). Nowhere does this observation apply more than in the failure analysis of implants. Hip and knee implants...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006811
EISBN: 978-1-62708-329-4
... of their service life. Medical devices, in some form or another, have been around for thousands of years ( Ref 4 ); however, the device milestones that have shaped modern medical interventions have occurred mostly over the past century ( Fig. 1 ). Orthopedic implants, such as hip and other joint replacements...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003792
EISBN: 978-1-62708-177-1
... that are typically assembled to create a prosthetic hip implant. A typical total hip implant system consists of a femoral stem (with or without a porous coating), a femoral head, a polymeric (ultrahigh molecular weight polyethylene, or UHMWPE) liner, and a metal acetabular shell. Figure 1(b) shows a typical total...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005669
EISBN: 978-1-62708-198-6
... by investment casting cobalt-chromium alloys (see the section “Orthopaedic Applications—Cast CoCrMo (ASTM F75)” in this article) for joint reconstruction followed with cobalt-chromium hip caps (cup-shaped components for placement over degraded femoral heads as interpositional implants) being introduced...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006908
EISBN: 978-1-62708-392-8
... of titanium and titanium alloys as excellent candidates for orthopedic biomaterials, complications often arise following implantation of various orthopedic devices (e.g., metal-on-metal hip, knee replacement, spinal disk replacement, shoulder replacement, shoulder suture anchors, intramedullary humeral nails...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006857
EISBN: 978-1-62708-392-8
.... ( Ref 93 ) demonstrated the fabrication of titanium/nanohydroxyapatite composites to improve the bioactivity and wear resistance of pure titanium implants; however, the tensile strength was significantly reduced. Functionally graded titanium/hydroxyapatite composites have also been studied...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
..., which was subsequently named Vitallium, and has been used since the 1930s. Today (2008), this alloy is used for orthopedic implants, most notably artificial hips and knees. The alloy is generically referred to by its ASTM International designation, F-75 (also by ISO 5832 part 4), and contains...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006905
EISBN: 978-1-62708-392-8
..., but the consideration of affinity in vivo derived from the structure is also important. It is essential that the bone/implant interface be functionally fused and connected by bone with sound anisotropy to behave as a functional material. The body fluid/cell invasion into the porous structure and the cell adhesion...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006888
EISBN: 978-1-62708-392-8
... devices. However, they have been supplanted by other materials in many cases, especially in structural implants such as hip and knee replacements. Nevertheless, stainless steels may again be contenders for implants because of their low cost and reasonable performance. Additively manufactured stainless...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
... composites dental applications drug-delivery systems endovascular devices glass knee implants medical device design metals nanomaterials natural materials neurostimulation ophthalmic applications orthopedic applications polymers stem cells total hip replacement urology THE FIELD...