Skip Nav Destination
Close Modal
By
Chung-Yeh Sa
By
Charles W. Peterson, G. Ehnert, R. Liebold, K. Hörsting, R. Kühfusz
Search Results for
fully developed blanks
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 282
Search Results for fully developed blanks
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Blanking and Piercing
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005117
EISBN: 978-1-62708-186-3
...-forming operations, namely, rectangular blank, rough blank, partially developed blank, and fully developed blank. It concludes with a discussion on the process capabilities, applications, and limitations of fine-edge blanking and piercing. blanking cam piercing conventional piercing...
Abstract
This article begins with a discussion on the fundamentals of cutting. It focuses on blanking and piercing operations in a press tool to form and shape the final part geometry. The types of piercing operations include conventional piercing, piercing with a pointed punch, piece-and-extrude operations, slotting, countersinking, and cutting and lancing of tabs. The article provides information on the punch assembly, the die assembly, and the stripper and discusses the factors considered during piercing operations. It reviews the applications of the four types of blanks used in sheet-forming operations, namely, rectangular blank, rough blank, partially developed blank, and fully developed blank. It concludes with a discussion on the process capabilities, applications, and limitations of fine-edge blanking and piercing.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005110
EISBN: 978-1-62708-186-3
... flatness and preventing the part from moving away from the punch, which could cause die break or edge fracture. (d) The upward-moving ram advances the blanking punch until the part is fully sheared and rests in the upper die opening. In the same action, the punch pierces a hole in the workpiece. The scrap...
Abstract
Fine-blanking is a hybrid metal forming process that combines the technologies of stamping and cold extrusion. This article describes the three principal design features of the fine blanking process: the vee-ring, clearance between punch and die, and counterforce imposed by the ejector. It discusses the advantages and disadvantages of edge blanking and materials. The article reviews the classification of fine-blanking dies such as the moving-punch system and the fixed-punch system, and provides information on the mechanical and hydraulic fine-blanking presses.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003982
EISBN: 978-1-62708-185-6
... design ( Ref 4 ). Following his work, a simulation program has been developed that assists the engineer in predicting how a ring will roll on a mill. It has been refined over the years and has become a useful tool to predict rolling forces required, rolling curve, rolling temperature, blank shape...
Abstract
Ring rolling is a process for creating seamless ring shaped components using specialized equipment and forming processes. This article provides information on the applications of ring rolling. It discusses the types of machines used for ring rolling, namely, vertical rolling machines, radial-axial horizontal rolling machines, four-mandrel mechanical table mills, three-mandrel table mills, and automatic radial-axial multiple-mandrel ring mills. The article provides a discussion on the process control technology and ancillary operations of ring rolling. It describes the methods of producing ring blanks and the various types of blanking and rolling tools used in ring rolling process. The article concludes with a discussion on rolled ring tolerances and machining allowances.
Book Chapter
Rubber-Pad Forming and Hydroforming
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005124
EISBN: 978-1-62708-186-3
... the first after it had been formed. Fig. 3 Cockpit rail section that was formed on a single form block by the Guerin process. Dimensions given in inches A fully developed blank, 2.54 mm (0.100 in.) thick, was cut from aluminum alloy 2014-O and solution heat treated. Forming was done...
Abstract
This article focuses on the three basic groups of flexible-die forming methods: rubber pad, fluid cell, and fluid forming. It provides information on the Guerin process, the Verson-Wheelon process, the trapped-rubber process, the Marform process, the Hydroform process, the SAAB process, and the Demarest process. The article provides a discussion on the procedures of these processes, as well as the presses and tools used. It describes the methods of hydraulic forming of thin metal parts, namely, hydraulic forming with diaphragm, hydraulic forming with gasket and pressure control, and hydrobuckling.
Book Chapter
Blanking of Low-Carbon Steel
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005108
EISBN: 978-1-62708-186-3
... classifications: Rectangular blanks Rough blanks Partially developed blanks Fully developed blanks These types of blanks are described in more detail in the section “Blanking Operations” in the preceding article “Blanking and Piercing” in this Volume. This classification of blanks has...
Abstract
This article discusses the production of blanks from low-carbon steel sheet and strip in dies in a mechanical or hydraulic press. It describes the cutting operations that are done by dies in presses to produce blanks. The applications of blanking methods are described with examples. The article reviews the characteristics of blanked edges and explains how to calculate the forces and the work involved in blanking. Factors affecting the processing of blanks are discussed. The article provides information on the selection of work metal form, the effect of work metal thickness on the selection of material for dies and related components, as well as the selection of die type and design. The article illustrates the construction and use of short-run dies and conventional dies. It concludes with information on the shaving and deburring methods for blanking.
Book Chapter
Trimming Operations
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005118
EISBN: 978-1-62708-186-3
.... Formed parts other than those produced from fully developed blanks also must undergo some trimming before they are brought to final size. Analysis of Parts to be Trimmed Trimming of a part is usually performed immediately after a drawing operation. Therefore, it is necessary to consider what...
Abstract
Trimming is the removal of excess metal from a stamped part to allow the part to reach the finished stage or to prepare it for subsequent operations. This article presents an analysis of parts to be trimmed and describes the selection criteria for the different types of trimming dies such as conventional trimming dies and cam trimming dies. It provides information on rough and finish trimming and construction details of trimming dies. The article reviews the selection criteria of presses for a trimming operation. It provides a discussion on the scrap and material handling processes in trimming.
Book Chapter
Blanking and Piercing of Electrical Steel Sheet
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005119
EISBN: 978-1-62708-186-3
... Abstract This article discusses the presses, auxiliary equipment, and dies used in the blanking and piercing of commonly used magnetically soft materials, namely, low-carbon electrical steels and oriented and nonoriented silicon electrical steels. It describes the effect of stock thickness...
Abstract
This article discusses the presses, auxiliary equipment, and dies used in the blanking and piercing of commonly used magnetically soft materials, namely, low-carbon electrical steels and oriented and nonoriented silicon electrical steels. It describes the effect of stock thickness and work metal composition and condition on blanking and piercing. The article provides an overview of the influence of burr height on stacking factors and presents a discussion on the lubrication and core plating of electrical steels that ease the process.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002171
EISBN: 978-1-62708-188-7
... are still not clean (not fully developed), development can be repeated without damaging the image. In some cases it is desirable to bake the panels after development. Convection or infrared ovens are used. Postbaking helps to evaporate the remaining solvents in the photoresist and secures a tougher...
Abstract
Photochemical machining (PCM), also known as chemical blanking, is a metal-etching process that uses a photoresist to define the locations where the metal will be etched. This article describes the major steps used in the PCM process, namely, the preparation of the phototool, selection of the metal, preparation of the workpiece, masking with photoresists, etching, and stripping and inspection. The article reviews various design considerations for the PCM process. These include dimensional limitations, tolerances, and edge quality. The article also discusses the advantages, disadvantages, and applications of the PCM process.
Book Chapter
Progressive Dies
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005160
EISBN: 978-1-62708-186-3
... prior to piercing of nearby holes. Fig. 2 Strip development for a ring-shaped part (two at a time). Note idle stage for die strength, layout of strip for material economy. Fig. 3 Basic blank shapes Fig. 4 Single-row blank layouts (shaded areas represent punches) Fig...
Abstract
This article discusses different factors for selecting progressive dies: costs, production volume, and press availability. It describes the purposes of strip development for a ring shaped part and presents the principles for the development of progressive dies. The article provides discussions on the general design features of progressive dies and the choice of proper auxiliary equipment such as coil feeders and scrap handling equipment. It concludes with information on different presses for progressive die work: open-back inclinable presses, four-column presses, and automatic underdrive presses.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005145
EISBN: 978-1-62708-186-3
... A contoured exhaust cone ( Fig. 4a ) was made by cutting a flat blank from mill-annealed A-286 sheet, rolling and welding a cone from the blank, and then bulging the cone into final shape. Developed blanks for two cones were cut from one sheared rectangle ( Fig. 4b ) with little waste of stock. Fig. 4...
Abstract
This article tabulates the nominal compositions for nickel and cobalt alloys. It illustrates the comparison of strain-hardening rates of a number of alloys in terms of the increase in hardness with increasing cold reduction. The forming practice for age-hardenable alloys and the lubricants used in the forming processes of nickel and cobalt alloys are also discussed. The article summarizes the modification of tools and dies used for cold forming other metals, as the physical and mechanical properties of nickel and cobalt alloys frequently necessitate it. It discusses forming techniques for these alloys and provides several examples of these techniques, which include shearing, blanking, piercing, deep drawing, spinning, explosive forming, bending, and expanding/tube forming.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005121
EISBN: 978-1-62708-186-3
... Variables on Deep Drawing” in this article. Effect of Punch and Die Radii As the blank is struck by the punch at the start of drawing, it is wrapped around the punch and die radii; the stress and strain that develop in the workpiece are similar to those developed in bending, with an added stretching...
Abstract
This article illustrates the mechanics of the deep drawing of a cylindrical cup. It discusses the fundamentals of drawing and drawability. Sheet metal is drawn in either hydraulic or mechanical presses. The article summarizes the defects in drawing and factors considered in press selection for drawing. It explains the types of dies used for drawing sheet metal and the effects of process variables and material variables on deep drawing. The process variables that affect the success or failure of a deep-drawing operation include the punch and die radii, punch-to-die clearance, press speed, lubrication, and type of restraint of metal flow used. The article describes the process of redrawing and ironing of metals. Drawing of workpieces with flanges and drawing of hemispheres are also illustrated. The article also provides information on the reducing of drawn shells, methods for expanding portions of drawn workpieces, trimming, and deep drawing using fluid-forming presses.
Book Chapter
Forming of Steel Strip in Multiple-Slide Machines
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005165
EISBN: 978-1-62708-186-3
.... The first method consists of cutting the full contour of the ends of two adjacent parts in one machine stroke ( Fig. 5a ). The second method consists of partly developing the contour in the press station and then using the cutoff station to complete the contour by parting the blank from the strip...
Abstract
Multiple-slide forming is a process in which the workpiece is progressively formed in a combination of units that can be used in various ways for the automated fabrication of a large variety of simple and intricately shaped parts from coil stock or wire. This article discusses the components of multiple-slide rotary forming machines involved in the blanking and forming of strip stock. It describes a complicated application of the two-level forming, with an example.
Book Chapter
Computer-Aided Engineering in Sheet Metal Forming
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005151
EISBN: 978-1-62708-186-3
..., not all factors have the same impact on overall formability. Generally speaking, the following list gives the primary factors that a CAE model should focus on: Product design (shape of the part) Die-face development Blank shape and location Boundary conditions Material properties...
Abstract
This article focuses on the technology breakthroughs that make forming simulation a routine work throughout the industry. It discusses many forms of the computer-aided engineering (CAE) methodology. The article describes several failure criteria to predict the failure of sheet metal. It explains the numerical procedure for sheet metal forming and reviews the important technical issues in CAE simulations. The article provides information on the applications and process of metal-forming simulation. It also reviews the capabilities of major systems that are popular among sheet metal forming users worldwide.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004004
EISBN: 978-1-62708-185-6
... Abstract Cold heading is typically a high-speed process where a blank is progressively moved through a multi-station machine. This article discusses various cold heading process parameters, such as upset length ratio, upset diameter ratio, upset strain, and process sequence design. It describes...
Abstract
Cold heading is typically a high-speed process where a blank is progressively moved through a multi-station machine. This article discusses various cold heading process parameters, such as upset length ratio, upset diameter ratio, upset strain, and process sequence design. It describes the various components of a cold-heading machine and the tools used in the cold heading process. These include headers, transfer headers, bolt makers, nut formers, and parts formers. The article explains the operations required for preparing stock for cold heading, including heat treating, drawing to size, machining, descaling, cutting to length, and lubricating. It lists the advantages of the cold heading over machining. Materials selection criteria for dies and punches in cold heading are also described. The article provides examples that demonstrate tolerance capabilities and show dimensional variations obtained in production runs of specific cold-headed products. It concludes with a discussion on the applications of warm heading.
Book Chapter
Compression Molding
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003415
EISBN: 978-1-62708-195-5
... of improved glass mat technologies: Glass mat reinforcements have developed to the point where they are very highly consistent in glass fiber distribution, blank weight distribution, local mechanical properties, and maximum load conditions. Optimized matching of matrix and reinforcement: The flow...
Abstract
Compression molding is the single largest primary manufacturing process used for automotive composite applications. This article provides an overview of the compression molding process. It describes the basic design, materials, and processing equipment of three main groups of composite materials, namely, glass-fiber-mat-reinforced thermoplastics, long-fiber-reinforced thermoplastics, and sheet molding compounds. The article also presents information on the application examples and market volume of compression molding.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... in understanding both necking and splitting. Splits typically open between 0 and 45° to the direction of load application, but this is complicated by complex blank and part shapes, die process, and metal flow. Splits are not found on critical radii but instead can be seen at the tangent point between the radii...
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Book Chapter
Bending of Sheet Metal
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005161
EISBN: 978-1-62708-186-3
..., the outside surface of the sheet metal is increased in length, and the inside surface of the sheet metal is decreased in length, but the length of the neutral axis remains the same. Because the neutral axis is a true representation of the original blank length, it is used for blank-development calculations...
Abstract
Bending is a common metalworking operation to create localized deformation in sheets (or blanks), plates, sections, tubes, and wires. This article emphasizes on the bending of sheet metal along with some coverage on flanging. It informs that variations in the bending stresses cause springback after bending, and discusses the variables and their effects on springback, as well as the methods to overcome or counteract them. These methods include overbending, bottoming or setting, and stretch bending. The article provides information on elastic bending, non-cylindrical bending, elastic-plastic bending, and pure plastic bending. Sheet metal bendability is a critical factor in many forming operations. The article illustrates the derivation of two relevant bend-ductility equations.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003980
EISBN: 978-1-62708-185-6
... Abstract This article discusses the operation of upset forging machines and selection of the machine size. It describes several types of upsetter heading tools and their materials. The article reviews the cold shearing and hot shearing methods for preparing blanks for hot upset forging...
Abstract
This article discusses the operation of upset forging machines and selection of the machine size. It describes several types of upsetter heading tools and their materials. The article reviews the cold shearing and hot shearing methods for preparing blanks for hot upset forging. It deals with various upsetting processes: offset upsetting, double-end upsetting, upsetting with sliding dies, upsetting pipe and tubing, and electric upsetting. The article also provides information on hot forging and cold forging.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009153
EISBN: 978-1-62708-186-3
... design with the same setup by adjusting the tool path only. Fig. 3 Two-point incremental sheet forming (TPIF). Source: Ref 2 Kinematic Incremental Sheet Forming (KISF) A new development is the use of two forming tools (one on either side of the blank), which are actuated simultaneously...
Abstract
This article provides an overview of the incremental sheet forming (ISF) process and discusses the process variations of ISF. These variations include single-point incremental forming, two-point incremental forming, and kinematic incremental sheet forming. The article discusses the machines and equipment used in the process and describes the process parameters, process mechanics, and process limits. It illustrates multistage forming strategies and summarizes difficulties that exist with regard to the finite-element process simulation of ISF process. The article also describes hybrid process variations, such as stretch forming and laser-assisted ISF.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005162
EISBN: 978-1-62708-186-3
... this experience, it can be determined: How the metal flows and reacts in the die How much work can be done in each operation What is the best sequence of operations What the size and shape of the developed blank should be Progressive dies are used to perform an almost endless variety...
Abstract
This article reviews the selection and formability characteristics of steels, with an emphasis on low-carbon steels and some coverage on the forming of high-carbon steels. It describes the key factors that affect the formability of steels in terms of steelmaking practices, surface finishes, metal thicknesses, and alloying. The article explains the bending and forming operations with some examples. It also describes the formation of various shells, including doubly contoured shells, deep recessed shells, and deep circular shells.
1