Skip Nav Destination
Close Modal
Search Results for
fuel-fired furnaces
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 261 Search Results for
fuel-fired furnaces
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2008
Fig. 2 Typical lip-axis tilting crucible furnace used for fuel-fired furnace melting of copper alloys. Similar furnaces are available that tilt on a central axis
More
Image
Published: 01 December 2008
Fig. 1 Cross section of a stationary fuel-fired furnace for open-crucible melting of magnesium alloys
More
Image
Published: 01 December 2008
Fig. 6 Cross section of a stationary fuel-fired furnace used for the open crucible melting of magnesium alloys
More
Image
Published: 01 December 2008
Fig. 1 Typical lift-out type of fuel-fired crucible furnace, especially well adapted to foundry melting of smaller quantities of copper alloys (usually less than 140 kg, or 300 lb)
More
Image
Published: 01 November 1995
Fig. 2 Major convection flows in a fuel-fired tank furnace (longitudinal vertical section on tank centerline)
More
Image
Published: 01 November 1995
Fig. 3 Tank furnace construction typical of side fuel-fired container glass melters. Source: Ref 14
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005198
EISBN: 978-1-62708-187-0
... heated fuel-fired furnaces and to electric resistance or induction furnaces with rammed refractory linings. Advantages include: Small, compact size and relatively lower acquisition cost are economical. Smaller (and round) furnaces provide and maintain good, even temperature profiles. Open...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003199
EISBN: 978-1-62708-199-3
... reliable, safe operation over the expected maximum life of the equipment. Fuel-Fired Furnaces Electrical Power for Fuel-Fired Furnaces The safe use of electrical energy employed in heat treating control processes requires adherence to National Electrical Codes and to local requirements of states...
Abstract
Control of temperature and furnace atmospheres has become increasingly critical to successful heat treating. Temperature instrumentation and control systems used in heat treating include temperature sensors, controllers, final control elements, measurement instruments, and set-point programmers. This article describes these items and discusses the classifications and control of furnace atmospheres. The article also describes the surface carbon control devices available for the wide variety of furnace atmospheres and evaluation of carbon control. Finally, the article provides a set of guidelines for safety procedures that are common to all industrial heat treating furnace installations.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005905
EISBN: 978-1-62708-167-2
... operations in the aluminum industry. These include high melt quality, great flexibility, simple operation, and good environmental compatibility. In contrast to fuel-fired or resistance-heated furnaces that heat the melt material indirectly, inductive power transmission generates the heat directly in the melt...
Abstract
Crucible furnaces, as compared to electric arc furnaces, are increasingly deployed in various melting practices due to their environmental and workplace friendliness and their process benefits. This article focuses on the application of induction crucible furnaces for melting and pouring operations in small-and medium-sized steel foundries, including aluminum, copper, and zinc industries. It also provides information on the process engineering benefits of melting and pouring operations.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005931
EISBN: 978-1-62708-166-5
...-acquisition (SCADA) system is used to monitor, collect, and store data from multiple pieces of equipment. burners configurable controllers flow measurement control systems fuel-fired furnaces heat treating furnaces mechanical motion component programmable logic controllers pumps quench agitators...
Abstract
Heat treating furnaces require different control systems and integration for achieving optimum technical results and enabling safe operation. This article focuses on atmosphere furnaces, with some coverage on controls for vacuum furnaces. Heat treating operations require reliable monitoring and control of motion and position of various mechanical components with the help of mechanical limit switches, proximity sensors, and distance- and position-measuring devices. Using inputs from both flow meters and sensors, such as thermocouples and oxygen sensors, flow measurement control systems must be able to adjust the flow of gases for process optimization. The operator interface of a furnace-control system displays critical information such as the furnace temperature, atmosphere status, alarms, electronic chart recorders, recipe, and maintenance. A supervisory control and data-acquisition (SCADA) system is used to monitor, collect, and store data from multiple pieces of equipment.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005908
EISBN: 978-1-62708-167-2
... materials, lead to low specific energy consumption and environmental competitiveness. The high total efficiency of induction melting processes compared with fuel fired furnaces is continuously being improved and optimized through practical research aided by computational simulations of electromagnetic...
Abstract
Induction processes for melting and heating of metals belong to the high-energy-consuming industrial processes, and continuous improvement of energy efficiency of competitive melting and heating technologies is of increasing interest. This article discusses the energy demand of various melting processes and the improvements in the efficiency of melting processes in induction crucible furnaces. It provides energetic and ecological comparisons of different furnaces for melting of cast iron and aluminum. The article also describes the energy and power management of induction melting processes.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004156
EISBN: 978-1-62708-184-9
... Corrosion The lower furnace of a coal- or oil-fired boiler is essentially a large enclosed volume where the combustion of fossil fuel, as well as the cooling of the combustion products, takes place. The furnace enclosures are made of water-cooled tubes, generally in a welded membrane construction...
Abstract
The presence of certain impurities in coal and oil is responsible for the majority of fireside corrosion experienced in utility boilers. In coal, the primary impurities are sulfur, alkali metals, and chlorine. The most detrimental impurities in fuel oil are vanadium, sodium, sulfur, and chlorine. This article describes the two categories of fireside corrosion based on location in the furnace: waterwall corrosion in the lower furnace and fuel ash corrosion of superheaters and reheaters in the upper furnace. It discusses prevention methods, including changes to operating parameters and application of protective cladding or coatings.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005957
EISBN: 978-1-62708-166-5
.... Fluidized-bed furnaces heat a part by immersing it in a stream of heated particles (often aluminum oxide) and combustion gases. Most heat treating furnaces are fuel-fired, although electric-heated furnaces have made significant inroads, especially with higher-temperature applications above 1095 °C (2000...
Abstract
Furnaces are one of the most versatile types of industrial appliances that span many different areas of use. This article discusses the classification of various furnaces used in heat treating based on the mode of operation (batch-type furnaces and continuous-type furnaces), application, heating method, mode of heat transfer, type of materials handling system, and mode of waste heat recovery (recuperation and regeneration). It provides information on uniform temperature distribution, the general requirements and selection criteria for insulation materials, as well as the basic safety requirements of these furnaces.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005303
EISBN: 978-1-62708-187-0
... furnace are poured into a ladle, which is then used to pour the molds ( Fig. 1 , 2 ). Fig. 1 Typical lift-out type of fuel-fired crucible furnace, especially well adapted to foundry melting of smaller quantities of copper alloys (usually less than 140 kg, or 300 lb) Fig. 2 Typical lip...
Abstract
This article describes the casting characteristics and practices of copper and copper alloys. It discusses the melting and melt control of copper alloys, including various melt treatments to improve melt quality. These treatments include fluxing and metal refining, degassing, deoxidation, grain refining, and filtration. The article provides a discussion on these melt treatments for group I to III alloys. It describes the three categories of furnaces for melting copper casting alloys: crucible furnaces, open-flame furnaces, and induction furnaces. The article explains the important factors that influence the selection of a casting method. It discusses the production of copper alloy castings. The article concludes with information on the gating and feeding systems used in production of copper alloy castings.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001269
EISBN: 978-1-62708-170-2
... are lower. Output will be increased and some of the wasted energy will be recovered by burning the hydrogen furnace atmosphere and the excess fuel from the preheater zones. Strip Exit Temperature If strip exit temperatures from the direct-fired furnace are too high, then the strip will be oxidized...
Abstract
This article focuses on the various techniques for removing contaminants in the surface preparation of steel for hot-dip coatings: wet cleaning methods, including alkaline cleaning, electrolytic cleaning, chemical pickling, and electrolytic pickling; flame cleaning and furnace-atmosphere techniques, such as Sendzimir oxidation/reduction method; other specialized methods, namely, fluxes, mechanical cleaning, and ultrasonic methods; or a combination of these.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006137
EISBN: 978-1-62708-175-7
... Explosion/Fire Risks For a fire or explosion to occur, a fuel or combustible gas must come into contact with air or oxygen in the presence of an ignition source. The required ratio of fuel to oxygen varies with each type of combustible gas or vapor ( Ref 3 ). Fire and explosion dangers are present...
Abstract
This article discusses the requirements for safe design, installation, operation, inspection, testing, and maintenance of sintering atmosphere generators and atmosphere supply systems for both personal and environment safety. The four intrinsic dangers associated with producing and using common sintering atmosphere gases are explosion, fire, toxicity, and asphyxiation.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005350
EISBN: 978-1-62708-187-0
... surface itself but is reradiated off the walls or the roof of the furnace. The term reverberatory furnace is a throwback to the World War II era, when the most common fuels for hearth aluminum melting were coal or coke ( Fig. 2 ). This necessitated locating the heat source or fire box at one end...
Abstract
This article illustrates the basic components of dry and wet hearth reverberatory furnaces. It discusses stack melters that are used for aluminum metal casting, as they are efficient in sealing the furnace and using the flue gases to preheat the charge materials. The article describes the various factors for improving and maintaining furnace efficiencies. It explains the benefits of circulating molten metal in reverberatory furnaces and circulation methods.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005929
EISBN: 978-1-62708-166-5
... electrode- or resistance-heated furnaces and are simple to install and operate. As described previously, gas- and oil-fired salt bath furnaces also have larger salt pots than resistance-heated furnaces. To contain the molten salt, fuel-fired furnaces employ a round or rectangular pot made of either...
Abstract
This article provides information on the salt baths used for a variety of heat treatments, including heating, quenching, interrupted quenching (austempering and martempering), case hardening, and tempering. It describes two general types of salt bath systems for steel hardening: the first type uses atmosphere austenitizing followed by salt quench and the second type employs austenitizing salt baths with rapid transfer to the quench salt. The article provides a detailed account on the construction, advantages and disadvantages, and limitations of isothermal quenching furnaces, submerged-electrode furnaces, immersed-electrode furnaces, and externally heated furnaces. It discusses the important applications of various furnace designs, including the austempering of ductile iron, the hardening of tool steels, and the isothermal annealing of high-alloy steels.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003050
EISBN: 978-1-62708-200-6
... concrete product (a) Combustion N N O None Incineration N O N None Refractors and brick (fuel firing) Combustion O N O None Incineration O O O Possible Granulated and agglomerated ash filling material Combustion O N O None Incineration O O O Possible...
Abstract
Ceramic and glass manufacturers take environmental regulations into consideration during all stages of the product cycle, from research and development to purchasing, processing, end use, and disposal. Ceramic and glass products are finding application in the construction industry and as raw materials for other processes. This article describes the recycling of in-process scrap and industrial wastes (fly ash, red mud, metallurgical waste, and other waste products), and applications of these recycled products. It focuses on environmental regulations such as Resource Conservation and Recovery Act and Clean Air Act. The Clean Air Act requires all states to meet minimum emissions standards for nitrogen-oxygen compounds, volatile organic compounds, and carbon monoxide.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
...-gravity low-pressure casting, and pressure die casting. Melting and Metal Treatment Aluminum and aluminum alloys can be melted in a variety of ways. In routine use are coreless and channel induction furnaces, crucible and open-hearth reverberatory furnaces (fired by natural gas or fuel oil...
Abstract
Aluminum alloys are primarily used for nonferrous castings because of their light weight and corrosion resistance. This article discusses at length the melting and metal treatment, structure control, sand casting, permanent mold casting, and die casting of aluminum alloys. It also covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites.
1