Skip Nav Destination
Close Modal
Search Results for
fuel gases
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 471
Search Results for fuel gases
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005642
EISBN: 978-1-62708-174-0
... Abstract This article contains a table that lists the properties of various fuel gases, namely, acetylene, hydrogen, methane, methyl acetylene propadiene, propane, propylene, and natural gas. It discusses shielding gases, their mixtures and uses in gas metal arc welding, flux cored arc welding...
Abstract
This article contains a table that lists the properties of various fuel gases, namely, acetylene, hydrogen, methane, methyl acetylene propadiene, propane, propylene, and natural gas. It discusses shielding gases, their mixtures and uses in gas metal arc welding, flux cored arc welding, gas tungsten arc welding, and plasma arc welding.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005991
EISBN: 978-1-62708-166-5
... Abstract Heat treating involves the use of fuel gases for heating and gases in the furnace atmosphere. This article describes the hazards associated with furnace atmospheres and the related safety considerations. It discusses the effect of fuel on combustion efficiency. The article also...
Abstract
Heat treating involves the use of fuel gases for heating and gases in the furnace atmosphere. This article describes the hazards associated with furnace atmospheres and the related safety considerations. It discusses the effect of fuel on combustion efficiency. The article also contains tables that provide information on the physical, thermal and combustion properties of common gases and liquids, and the heat content of various gases.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005807
EISBN: 978-1-62708-165-8
..., often permit flame hardening to be done by a variety of methods. These include the spot or stationary method, progressive method, spinning method, and the combination progressive-spinning method. This article provides information on fuel gases used in flame hardening and their selection criteria...
Abstract
Flame hardening is a heat treating process in which a thin surface shell of a steel part is heated rapidly to a temperature above the critical temperatures of the steel. The versatility of flame-hardening equipment and the wide range of heating conditions obtainable with gas burners, often permit flame hardening to be done by a variety of methods. These include the spot or stationary method, progressive method, spinning method, and the combination progressive-spinning method. This article provides information on fuel gases used in flame hardening and their selection criteria for specific applications. It also discusses operating procedures and control requirements for flame hardening of steel.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003210
EISBN: 978-1-62708-199-3
... such as diffusion and exothermic brazing. The article explains joint design, filler materials, fuel gases, equipment, and fluxes in the brazing methods. The article also describes the brazing of steels, stainless steels, cast irons, heat-resistant alloys, aluminum alloys, copper and copper alloys, and titanium...
Abstract
This article provides information about the selection of brazing processes and filler metals and describes the brazing (heating) methods, including manual torch brazing, furnace brazing, induction brazing, dip brazing, resistance brazing and specialized brazing processes such as diffusion and exothermic brazing. The article explains joint design, filler materials, fuel gases, equipment, and fluxes in the brazing methods. The article also describes the brazing of steels, stainless steels, cast irons, heat-resistant alloys, aluminum alloys, copper and copper alloys, and titanium and titanium alloys.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001483
EISBN: 978-1-62708-173-3
.... In addition to providing information on the equipment used, the article describes the properties of fuel gases (acetylene, natural gas). It also presents an overview of the effect of OFC on base metal and explains the application of OFC in cutting thin, medium, and thick sections, bars, and structural...
Abstract
Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article provides a detailed discussion on the principles of operation and the process capabilities of OFC. In addition to providing information on the equipment used, the article describes the properties of fuel gases (acetylene, natural gas). It also presents an overview of the effect of OFC on base metal and explains the application of OFC in cutting thin, medium, and thick sections, bars, and structural and close-tolerance shapes.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001385
EISBN: 978-1-62708-173-3
... in an automated system. The gas-oxygen is mixed in the torch body and is adjusted using the needle valves on the torch. Gas-air combinations can be mixed at the torch or, alternatively, a central mixing system can be used to supply many torches, particularly in automated applications. The typical fuel gases...
Abstract
Torch brazing utilizes a fuel gas flame as a heat source for the brazing process. This article discusses the advantages, limitations, applications, and key techniques of torch brazing, and presents an overview of the equipment used.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003179
EISBN: 978-1-62708-199-3
.... Cutting tips have a single cutting oxygen orifice centered within a ring of smaller oxyfuel gas exit ports. The operator changes the cutting capacity of the torch by changing the cutting tip size and by resetting pressure regulators and control valves. Because different fuel gases have different...
Abstract
This article discusses the operating principles, types, and applications of shearing and slitting of different forms of steel, including plates, flat sheets, bars, coiled sheet and strips. In addition, it provides a detailed account of the cutting methods such as oxyfuel gas cutting, plasma arc cutting, oxygen arc cutting, laser beam cutting, and air carbon arc cutting and gouging, describing their process capabilities, equipment used, operating principles and parameters, and factors affecting their efficiency.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001372
EISBN: 978-1-62708-173-3
... as fuel gases in welding metals with lower melting temperatures, such as aluminum, magnesium, zinc, lead, and some precious metals. Metals unsuited to OFW are the refractory metals, such as niobium, tantalum, molybdenum, and tungsten, as well as the reactive metals, such as titanium and zirconium...
Abstract
Oxyfuel gas welding (OFW) is a manual process in which the metal surfaces to be joined are melted progressively by heat from a gas flame, with or without a filler metal. This article discusses the capabilities, advantages, and limitations of OFW. It describes the role of gases, such as oxygen, acetylene, hydrogen, natural gas, propane, and proprietary gases, in OFW. The article discusses the important elements of an OFW system, such as gas storage facilities, pressure regulators, hoses, torches, related safety devices, and accessories. It describes the sequence for setting up a positive-pressure welding outfit. The article provides information on forehand welding and backhand welding, as well as various joints used. It concludes with a discussion on repairs and alterations, as well as the safety aspects.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001487
EISBN: 978-1-62708-173-3
... be explosive under some conditions. Fuel gases, such as acetylene or propane, are other common flammables often found in cutting and welding areas. Special attention should be given to fuel gas cylinders, hoses, and apparatus to prevent gas leakage. Combustibles that cannot be removed from the area...
Abstract
Safety is an important consideration in all welding, cutting, and related work. This article discusses the basic elements of safety general to all welding, cutting, and related processes. It includes safety procedures common to a variety of applications. The most important component of an effective safety and health program is management support and direction. The article reviews the role of management, training, housekeeping, and public demonstrations in welding safety to minimize personal injury and property damage. It provides information on the safety measures for eye and face protection in various welding and cutting operations. Injuries and fatalities from electric shock in welding and cutting operations can occur if proper precautionary measures are not followed. The article discusses the electrical safety aspects to be considered for various welding and cutting operations.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005717
EISBN: 978-1-62708-171-9
.... Gas Handling A variety of industrial gases and liquids are used directly for thermal spray processing. These include various carbon-base fuel gases, hydrogen, oxygen, inert gases, reactive gases, and kerosene. Although some process gases are chemically inert, serious harm and death can result...
Abstract
The hazards associated with thermal spray deposition processes include ultraviolet and infrared radiation; acoustical noise; and by-product production in the forms of nitrous oxides, ozone, fumes, and dust. The most important consideration in health and safety is to use the engineered controls of hazards. This article provides a brief description of the spray booth, the most commonly used engineering tool to separate the operator from the thermal spray process and confine the associated hazards. It also presents guidelines on the proper and safe handling of industrial gases and ventilation and heat exhaust. The article provides information on the personal protective equipment for eyes and skin from radiation, and ears from noise. It also discusses other potential safety hazards associated with thermal spraying, namely, magnetic fields and infrasound.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005758
EISBN: 978-1-62708-171-9
.... Flashback arrestors must be specifically rated for the gas in use and should be considered for every thermal spray system. They provide protection against flashbacks and reverse flow of fuel gases or oxygen or air. In addition, some of the safety features that are found singly or in combination in flashback...
Abstract
This article provides members of the thermal spray community with practical recommendations for the safe installation, operation, and maintenance of gas equipment used in the thermal spray process. It focuses on safety issues concerning gas equipment used in conjunction with thermal spray equipment at consumer sites. The article covers the gas sources (bulk or gaseous), the piping (hard and soft) leading to the gas console or the torch, and the specific safety devices used to help ensure safe operation. It discusses the characteristics and safety hazards of gases such as oxygen, compressed air, nitrogen, helium, argon, carbon dioxide, hydrogen, acetylene, kerosene, propylene, propane, and natural gas. The article also provides information on the maintenance and safety practices involved in the plumbing configurations of cylinder gas supply units and bulk gas supply units.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003200
EISBN: 978-1-62708-199-3
... progressively as the flame head moves from one end of the work to the other. The quench follows immediately behind the heating head, either as an integral part of the head or as a separate quench ring. Fig. 7 Combination progressive-spinning flame hardening Fuel Gases Several different fuel...
Abstract
This article discusses the fundamentals and applications of localized heat treating methods: induction hardening and tempering, laser surface transformation hardening, and electron-beam heat treatment. The article provides information about equipment and describes the selection of frequency, power, duration of heating, and coil design for induction hardening. The article also discusses the scope, application, methods, and operation of flame hardening.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005718
EISBN: 978-1-62708-171-9
...-to-fuel ratio, and the pressure in the combustion zone. Temperatures for common fuel gases range from 2540 to 3150 °C (4600 to 5700 °F). What is not commonly appreciated is the great heat generated by these processes. Standard oxyfuel spray torches operate at energies of 20 to 50 MJ (20,000 to 50,000 Btu...
Abstract
This article presents the major thermal spray processes and their subsets, presenting each of the commercially significant processes together with some of their important variations. Each process is presented along with the attributes that influence coating structure and performance. The article summarizes the essential equipment components and necessary controls. The various thermal spray processes are conventional flame spray, detonation gun, high-velocity oxyfuel spray, electric arc spray, and plasma arc spray. Other processes, such as cold spray, underwater plasma arc spray, and extended-arc and other high-energy plasma arc spray, are also considered.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005635
EISBN: 978-1-62708-174-0
... processes. Consequently, the quantity of fumes emitted is normally lower. The gases formed are the reaction products of fuel-gas combustion and of the chemical reactions between the gases and other materials present. The fumes emitted are the reaction products of the base metals, coatings, filler metals...
Abstract
This article presents an overview of the rules, regulations, and techniques implemented to minimize the safety hazards associated with welding, cutting, and allied processes. Safety management, protection of the work area, process-specific safety considerations, and robotic and electrical safety are discussed. The article explains the use of personal protective equipment and provides information on protection against fumes, gases, and electromagnetic radiation. It concludes with a discussion on safe handling of compressed gases as well as the prevention and protection of fire and explosion.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... be welded in a single pass. Gases Oxygen and acetylene are the principal gases used in OFW. Oxygen supports combustion of the fuel gases. Acetylene supplies both the heat intensity and the atmosphere needed to weld steel. Hydrogen, natural gas, propane, and proprietary gases are used only...
Abstract
This article discusses the principles of operation, equipment needed, applications, and advantages and disadvantages of various fusion welding processes, namely, oxyfuel gas welding, electron beam welding, stud welding, laser beam welding, percussion welding, high-frequency welding, and thermite welding.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003602
EISBN: 978-1-62708-182-5
... the individual cells and electrically connects them in series in a fuel- cell stack. In some designs, the bipolar plate also contains gas channels that feed the reactant gases to the porous electrodes and remove the reaction products and inert gases. Bipolar plates made from graphite resin mixtures...
Abstract
This article describes the ideal performance of various low-temperature and high-temperature fuel cells that depends on the electrochemical reactions that occur between different fuels and oxygen. Low-temperature fuel cells, such as polymer electrolyte, alkaline, and phosphoric acid, and high-temperature fuel cells, such as molten carbonate and solid oxide, are discussed. The article contains tables that provide information on the evolution of cell-component technology for these fuel cells. It concludes with information on the advantages and limitations of the fuel cells.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005175
EISBN: 978-1-62708-186-3
.... The operator changes the cutting capacity of the torch by changing the cutting tip size and by resetting pressure regulators and control valves. Because different fuel gases have different combustion and flow characteristics, the construction of cutting tips, and sometimes of mixing chambers, varies according...
Abstract
Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article discusses the operation principles and process capabilities of the OFC. It reviews the properties and compositions of fuel types such as acetylene, natural gas, propane, propylene, and methyl-acetylene-propadiene-stabilized gas. The article describes the effects of OFC on base metal, including carbon and low-alloy steels, cast irons, and stainless steels. It provides information on light cutting, medium cutting, heavy cutting, and stack cutting. The article informs that the basic oxyfuel method can be modified to allow gas cutting of metals, such as stainless steel and most nonferrous alloys, that resist continuous oxidation.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005926
EISBN: 978-1-62708-166-5
... with established confined-space safety and lockout/tagout procedures. Other appropriate safety procedures may also be beneficial. Furnace Atmosphere Gas Reactions Flue gases in a direct-fired furnace are the effluent products created by combustion of hydrocarbon fuel. The composition of these gases inside...
Abstract
This article provides a detailed discussion on the types of furnace atmospheres required for heat treating. These include generated exothermic-based atmospheres, generated endothermic-based atmospheres, generated exothermic-endothermic-based atmospheres, generated dissociated-ammonia-based atmospheres, industrial gas nitrogen-base atmospheres, argon atmospheres, and hydrogen atmospheres. Atmospheres for backfilling, partial pressure operation, and quenching in vacuum are also discussed. Furnace atmospheres constitute four major groups of safety hazards in heat treating: fire, explosion, toxicity, and asphyxiation. The article reviews the fundamentals of principal gases and vapors. It describes how the evaluation of the atmospheric requirements of heat treating furnaces is influenced by factors such as cost of operation and capital investment.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005848
EISBN: 978-1-62708-167-2
... atmosphere safety hazards brazing carbon monoxide induction heat treating nitrogen sintering THE EARTH'S ATMOSPHERE is comprised of 77% nitrogen, 21% oxygen, 1% water vapor, and 1% other gases. Most metals oxidize in the presence of oxygen and water vapor, forming metal oxides that, at room...
Abstract
Controlled atmosphere chambers are used to control the surface chemistry of the metals that are being processed. This article focuses on the various types of controlled atmospheres used in induction heat treating and brazing, namely, inert gas atmospheres based on argon and helium; prepared and commercial nitrogen-base atmospheres; and brazing atmospheres. It provides detailed information on two types of controlled atmosphere chambers: atmosphere and vacuum. The article also describes the selection factors, advantages, and disadvantages of these chambers.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005983
EISBN: 978-1-62708-166-5
... dioxide and carbon monoxide are two other important gases when processing steel. At austenitizing temperatures, carbon dioxide reacts with surface carbon in a steel surface to produce carbon monoxide. The most common hydrocarbon gases added to or found in furnace atmospheres are methane (CH 4 ), ethane (C...
Abstract
This article describes the effects of furnace atmospheric elements on steels. These elements are air, water vapor, molecular nitrogen, carbon dioxide, and carbon monoxide. The article provides useful information on six groups of commercially important prepared atmospheres classified by the American Gas Association on the basis of method of preparation or on the original constituents employed. These groups are designated and defined as follows: Class 100, exothermic base; Class 200, prepared nitrogen base; Class 300, endothermic base; Class 400, charcoal base; Class 500, exothermic-endothermic base; and Class 600, ammonia base. These are subclassified and numerically designated to indicate variations in the method by which they are prepared. The article also contains a table that lists significant furnace atmospheres and their typical applications.
1