Skip Nav Destination
Close Modal
Search Results for
friction stir welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 180 Search Results for
friction stir welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005576
EISBN: 978-1-62708-174-0
... Abstract This article discusses the development of a welding procedure for friction stir welding (FSW), including the process of defining a preliminary procedure, the optimization of parameters, the development of supporting data, and other key features to ensure a successful procedure...
Abstract
This article discusses the development of a welding procedure for friction stir welding (FSW), including the process of defining a preliminary procedure, the optimization of parameters, the development of supporting data, and other key features to ensure a successful procedure. The critical features of FSW tool design, initial process parameters, systematic welding trials, and robustness testing are reviewed. The article provides information on the common features of welding procedure qualification. It also includes a table that lists the procedures used in the production of sound friction stir welds in various aluminum alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006500
EISBN: 978-1-62708-207-5
... Abstract This article focuses on friction stir welding (FSW), where frictional heating and displacement of the plastic material occurs by a rapidly rotating tool traversing the weld joint. Much of the research activity early on pertained to issues related to understanding the process...
Abstract
This article focuses on friction stir welding (FSW), where frictional heating and displacement of the plastic material occurs by a rapidly rotating tool traversing the weld joint. Much of the research activity early on pertained to issues related to understanding the process, such as learning about material flow, heat generation, microstructure development, and many other fundamental issues. The article summarizes the results of the research, describing the aspects of how FSW actually accomplishes sound joints in metals without melting them. It discusses the FSW process variations and the practical aspects of heat generation. The article provides information on the effect of welding on material properties and typical alloys in FSW applications. The alloys include 6061 aluminum, 5083 aluminum, 2xxx aluminum, and 7xxx aluminum alloys. The article concludes with a discussion on FSW equipment.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005629
EISBN: 978-1-62708-174-0
... Abstract A key differentiator between friction stir welding (FSW) and other friction welding processes is the presence of a nonconsumable tool in FSW, often referred to as a pin tool to differentiate it from other tooling associated with the process. This article discusses materials...
Abstract
A key differentiator between friction stir welding (FSW) and other friction welding processes is the presence of a nonconsumable tool in FSW, often referred to as a pin tool to differentiate it from other tooling associated with the process. This article discusses materials for friction stir welding (FSW) pin tools, various tool geometries that have been used, designs for specific applications, predicting and measuring tool performance, and other considerations in FSW pin tool design. The tool materials include tool steels, superalloys, refractory metals, carbides and ceramics, and superabrasives.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005637
EISBN: 978-1-62708-174-0
... Abstract Friction stir welding (FSW) involves plastic deformation at high strain rates and elevated temperatures with resultant microstructural changes leading to joining. This article provides a link between deformation and FSW process parameters and summarizes the results of experimental...
Abstract
Friction stir welding (FSW) involves plastic deformation at high strain rates and elevated temperatures with resultant microstructural changes leading to joining. This article provides a link between deformation and FSW process parameters and summarizes the results of experimental temperature measurements during FSW of various metals. It considers the physical explanation of the heat input during FSW and the possible methods of their estimation. The article presents the experimental results of two analytical models, supplemented by experimental/numerical flow models on material flow during FSW. The types of defects, processing parameters affecting the generation of these defects, and results of theoretical models and simulations to understand the formation and control of defects during FSW are discussed. The article concludes with information on the microstructure and its distribution produced during FSW.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005526
EISBN: 978-1-62708-197-9
... Abstract This article discusses the fundamentals of friction stir welding (FSW) and presents governing equations and an analytical solution for heat transfer. It provides the solutions for structural distortion in FSW. The article describes various techniques that have been adopted to solve...
Abstract
This article discusses the fundamentals of friction stir welding (FSW) and presents governing equations and an analytical solution for heat transfer. It provides the solutions for structural distortion in FSW. The article describes various techniques that have been adopted to solve the equations and simulate the FSW process. The techniques include modeling without convective heat transfer and modeling with convective heat transfer in a workpiece. The article concludes with information on active research topics in the simulation of FSW.
Image
Published: 31 December 2017
Fig. 5 Example of custom-built friction stir welding/friction stir processing machine. Source: Ref 16
More
Image
Published: 31 December 2017
Fig. 6 Example of modified milling machine for friction stir welding/friction stir processing. Reprinted with permission from Elsevier. Source: Ref 15
More
Image
Published: 31 December 2017
Fig. 7 Robotic systems for friction stir welding/friction stir processing. (a) Articulated arm. (b) Parallel-kinematic arm. Source: Ref 14
More
Image
Published: 30 November 2018
Fig. 7 Various friction stir welding pins. (a) Cylindrical pin used in welding thin plates. (b) Conical-shaped pin for welding thick plates. (c) Triflute-type pin developed for friction stir overlap welding. Source: Ref 7
More
Image
Published: 31 October 2011
Fig. 2 Schematic of friction stir welding tool, anvil, and workpiece for spherical-tipped pin and tilted tool axis, side view. See text for an explanation of the variables.
More
Image
Published: 31 October 2011
Fig. 3 Schematic of friction stir welding tool, anvil, and workpiece for flat-tipped pin and tilted tool axis, side view. See text for an explanation of the variables.
More
Image
Published: 31 October 2011
Fig. 1 Friction stir welding tool with convex scrolled shoulder of Densimet and MX Triflute probe of Nimonic 105. Source: Ref 34
More
Image
Published: 31 October 2011
Image
Published: 31 October 2011
Fig. 12 Self-optimizing probe geometry resulting from wear in friction stir welding of 6061 + 20% Al 2 O 3 with tool steel pin tool. Source: Ref 12
More
Image
Published: 31 October 2011
Image
Published: 31 October 2011
Fig. 19 Adjustable self-reacting (bobbin) pin tool used in friction stir welding of aluminum extrusions. Source: Ref 39
More
Image
Published: 31 October 2011
Fig. 6 Various layers in friction stir welding nugget as proposed by Schmidt and Hattel ( Ref 36 ). The streamlines (ψ) of material flow are also depicted, along with the shear layer variation with θ. Source: Ref 30
More
Image
Published: 31 October 2011
Fig. 11 Effect of tool rotational rate on defect formation in friction stir welding (FSW). Additionally, the effect of axial pressure on defects can be noted. Source: Ref 52
More
Image
Published: 31 December 2017
Image
Published: 30 November 2018
1