Skip Nav Destination
Close Modal
Search Results for
friction powder metallurgy materials
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 360
Search Results for friction powder metallurgy materials
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006100
EISBN: 978-1-62708-175-7
... Abstract Friction materials are the components of a mechanism that converts mechanical energy into heat upon sliding contact. This article discusses the selection criteria, manufacturing process, and applications of friction powder metallurgy materials. It provides information...
Abstract
Friction materials are the components of a mechanism that converts mechanical energy into heat upon sliding contact. This article discusses the selection criteria, manufacturing process, and applications of friction powder metallurgy materials. It provides information on the manufacturing process of powder metallurgy friction materials through a process of mixing/blending, compacting, and sintering. The final machining that they undergo, to ensure that they meet dimensional specifications, is also discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003135
EISBN: 978-1-62708-199-3
... metal powders, solid lubricants, oxides, and other compounds. These constituents are immiscible in each other, and therefore, can only be made by powder metallurgy. Table 7 shows compositions of some common copper-base friction materials. Compositions of some common copper-base friction materials...
Abstract
This article discusses the characteristics, properties, and production methods of copper powders and copper alloy powders. Bulk of the discussion is devoted to production and applications of powder metallurgy (P/M) parts, including pure copper P/M parts, bronze P/M parts, brass and nickel silver P/M parts, copper-nickel P/M parts, copper-lead P/M parts, copper-base P/M friction materials, copper-base P/M electrical contact materials, copper-base P/M brush materials, infiltrated parts, and oxide-dispersion-strengthened copper P/M materials.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001070
EISBN: 978-1-62708-162-7
..., including self-lubricating sintered bearings, structural parts, oxide-dispersion-strengthened copper, sintered metal friction materials, and porous filters. copper powder-metallurgy copper-base structural parts oxide-dispersion-strengthened copper porous bronze filters powder production methods...
Abstract
This article briefly reviews the subject of copper-base powder-metallurgy (P/M) products in terms of powder production methods (atomization, oxide reduction, electrolysis, and hydrometallurgy) and the product properties/consolidation practices of the major applications. Of the four major methods for making copper and copper alloy powders, atomization and oxide reduction are presently practiced on a large scale in North America. The article provides information on the mechanism, production, properties, composition and applications of different types of copper-base P/M products, including self-lubricating sintered bearings, structural parts, oxide-dispersion-strengthened copper, sintered metal friction materials, and porous filters.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006105
EISBN: 978-1-62708-175-7
... Abstract Development of the properties of copper powder metallurgy parts is affected by pressing and sintering processes used in the production of components, such as contacts, carbon brushes, and friction materials. This article briefly describes the powder properties of copper and discusses...
Abstract
Development of the properties of copper powder metallurgy parts is affected by pressing and sintering processes used in the production of components, such as contacts, carbon brushes, and friction materials. This article briefly describes the powder properties of copper and discusses the roles of lubricant and compaction dies in pressing of copper powders. It explains the structural defects that originate during the compaction process of PM parts. The article also provides information on sintering, re-pressing, and re-sintering of copper PM parts.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005502
EISBN: 978-1-62708-197-9
... discusses the experimental determination of material properties and simulation verification for compaction and sintering. It reviews the use of modeling and simulation of press and sinter powder metallurgy, including gravitational distorting in sintering, compaction optimization, sintering optimization...
Abstract
This article presents the governing equations and methodologies to model the press and sinter powder metallurgy, including continuum, micromechanical, multiparticle, and molecular dynamics approaches. It describes the constitutive relation for compaction and sintering. The article discusses the experimental determination of material properties and simulation verification for compaction and sintering. It reviews the use of modeling and simulation of press and sinter powder metallurgy, including gravitational distorting in sintering, compaction optimization, sintering optimization, and coupled press and sinter optimization.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006033
EISBN: 978-1-62708-175-7
... the missing material parameters during sintering of a 316L stainless steel ( Ref 38 ). Distortion: Powder metallurgy compacts reach very low strength levels during sintering. Accordingly, weak forces such as gravity, substrate friction, and nonuniform heating will induce distortion and even cracking...
Abstract
This article discusses continuum modeling, which is the most relevant approach in modeling grain growth, densification, and deformation during sintering. Continuum plasticity models are frequently used to describe the mechanical response of metal powders during compaction. The article illustrates the typical procedure for computer simulation for press and sinter process. It describes the procedure to obtain the material properties based on the generalized Shima-Oyane model. The article presents a wide variety of tests, accounting for data on the grain growth, densification, and distortion where these data help in the development of a constitutive model for sintering simulation. Finally, the article provides information on the simulation approaches used to optimize die compaction and sintering.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006083
EISBN: 978-1-62708-175-7
... , 1994 , p 73 – 89 5. Falleur G. and Hamilton J. , “Development of High-Density PM Processes for High Performance Applications,” presented at SIP 3, Technologies for PM Growth Part 4, 2013 International Conference on Powder Metallurgy and Particulate Materials (PM 2013) , June 24...
Abstract
Warm compaction uses both powder heating and die heating to effect higher component densities, whereas warm die compaction uses only die heating to achieve higher density. This article explains the influences of green and sintered properties and pore-free density during compaction of materials. It provides information on the concept of pore-free density and process considerations: die heating and powder heating. The article concludes with a review of the tooling design for warm compaction.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006109
EISBN: 978-1-62708-175-7
... composition cohesive strength compressibility flow rate frictional properties green strength metal powders particle morphology powder segregation rectangular test bar springback tap density POWDER METALLURGY (PM), metal injection molding, and additive manufacturing have grown considerably...
Abstract
This article describes the methods for determining the flow rate of metal powders. It examines the factors affecting flow rate, apparent density, and angle of repose of metal powders. The article reviews the frictional properties, cohesive strength, frictional properties, tap density, and compressibility of metal powders. It explains the mechanisms of powder segregation. The article provides information on green strength and springback value of rectangular test bar. It concludes with a discussion on the chemical composition of metal powders.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0005721
EISBN: 978-1-62708-199-3
... science, physical metallurgy, mechanical metallurgy, extractive metallurgy, melting and casting, forming and forging, powder metallurgy, heat treating, machining and grinding, welding and joining (brazing, soldering, and adhesive bonding), surface engineering (cleaning, finishing, and coating technology...
Abstract
This article is a compilation of definitions for terms related to engineering materials.
Book Chapter
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006085
EISBN: 978-1-62708-175-7
... Relative flow stress of each material friction Roberts and Roberts ( Ref 21 ) cite examples and conditions for successful co-reduction of metals by hot extrusion and cold wire drawing. The extrusion constant K defined in Eq 1 can be used to design billets for either powder extrusion...
Abstract
This article focuses on direct extrusion processing where metal powders undergo plastic deformation, usually at an elevated temperature, to produce a densified and elongated form having structural integrity. It provides information on the basic powder extrusion processes and the mechanics of extrusion. The article also examines specific extrusion practices for the production of wrought material from powder stock and provides examples of materials processed by powder extrusion.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006097
EISBN: 978-1-62708-175-7
..., toughness, and impact resistance; low coefficient of friction; and good antigalling characteristics. Three types of materials are generally found suitable for making tools and dies for compaction of stainless steel powders: carbides, tool steels, and high-speed steels. (Zirconia-base ceramics have been used...
Abstract
This article provides an overview of the compaction of metal powder in a rigid die and reviews the compaction characteristics of stainless steel powders, including green density, compressibility, green strength, apparent density, flow rate, and sintered density. It describes the influence of compaction characteristics of stainless steel powders in tool materials selection, lubrication, annealing, double pressing/double sintering, and warm compaction.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006108
EISBN: 978-1-62708-175-7
... Abstract This article characterizes the physical differences between powder metallurgy (PM) and wrought or cast materials, as they apply to joining. It discusses acceptable joining procedures and techniques, including welding and brazing and solid-state methods. Information on the weldability...
Abstract
This article characterizes the physical differences between powder metallurgy (PM) and wrought or cast materials, as they apply to joining. It discusses acceptable joining procedures and techniques, including welding and brazing and solid-state methods. Information on the weldability of various PM materials is presented. The article also describes the effects of porosity on several important properties that affect the welding characteristics.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006022
EISBN: 978-1-62708-175-7
... by reducing friction at the die-wall and core-rod interfaces. The metal powders may be elemental powders; mixtures of elemental powders; or mixtures of elemental powders with master alloys or ferroalloys, prealloys, diffusion alloys, or hybrid alloys. See the article “Ferrous Powder Metallurgy Materials...
Abstract
This article reviews various segments of the powder metallurgy (PM) process from powder production and powder processing through the characterization of the materials and their properties. It covers the processing methods for consolidating metal powders including options for processing to full density. The article outlines the freeform fabrication process, also known as additive manufacturing and describes finishing operations of PM parts. It concludes with information on the applications of PM parts.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003185
EISBN: 978-1-62708-199-3
... like tungsten and molybdenum were formed by P/M processing into articles for the electrical industry. Powder metallurgy processing was also used for the manufacture of composite electrical contacts. Cemented carbides and porous bronze bearings followed in the 1920s, friction materials in the 1930s...
Abstract
This article focuses on the significant fundamental powder characteristics, which include particle size, particle size distribution, particle shape, and powder purity, followed by an overview of general and individual powder production processes such as mechanical, chemical, electrochemical, atomizing, oxide reduction, and thermal decomposition processes. It also covers the consolidation of powders by pressing and sintering, as well as by high density methods. Further emphasis is provided on the distinguishing features of powders, their manufacturing processes, compacting processes, and consolidated part properties. In addition, a glossary of powder metallurgy terms is included.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006374
EISBN: 978-1-62708-192-4
... materials are produced by powder metallurgy (PM) processes. Compared to resin-bonded friction materials, sintered brake friction materials generally have higher structural strength, greater thermal resistance and thermal transference, and greater wear resistance, so they can be applied in more critical...
Abstract
This article focuses on friction and wear of automotive and aircraft brakes. It provides a comparison of friction and wear behaviors, frictional characteristics, and frictional performance of the friction materials. The article describes the components of brake friction materials and the classifications of brake lining materials. It discusses the effect of formulation compositions and manufacturing processes and the effect of braking operation conditions. The article provides information on aircraft brake linings, which operate under a wide range of kinetic energy conditions. The morphology effect of graphite on automotive brake drum and disk is explained. The article also describes the characteristics of specific wear rates for both normal and local cast iron in automotive brake drums and disk rotors. It provides information on noises, vibrations, and harshness caused by brake pads. The article concludes with information on physical and chemical testing of brakes and toxicity of brake formulation and regulations.
Book
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.9781627081757
EISBN: 978-1-62708-175-7
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006136
EISBN: 978-1-62708-175-7
... batteries). Similarly, composite materials can be produced by powder rolling metal-ceramic or metal-metal powder mixes. Microstructure Control It is possible to significantly reduce segregation of phases in a powder rolled strip, more so than in an ingot metallurgy processed material. Separation...
Abstract
Direct powder rolling (DPR) is a process by which a suitable powder or mixture of powders is compacted under the opposing forces of a pair of rolling mill rolls to form a continuous green strip that is further densified and strengthened by sintering and rerolling. This article discusses the basic principle, process considerations, and advantages of DRP, and describes the application of this process in the manufacture of powder titanium and titanium alloy components. It further illustrates the complexity of the process and describes the benefits of using DRP in terms of economics and product quality.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005531
EISBN: 978-1-62708-197-9
... Abstract Power metallurgy (PM) is a process of shaping metal powders into near-net or net shape parts combined with densification or consolidation processes for the development of final material and design properties. This article introduces the general considerations, models, and applications...
Abstract
Power metallurgy (PM) is a process of shaping metal powders into near-net or net shape parts combined with densification or consolidation processes for the development of final material and design properties. This article introduces the general considerations, models, and applications in the modeling of PM processes. It describes the PM process in terms of powder compaction and sintering. The article schematically illustrates powder injection molding for the production of plastic parts and describes PM process models such as discrete-element model (DEM), linear continuum model, and nonlinear continuum model. It concludes with information on the application of press and sinter modeling to practical problems in PM.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006445
EISBN: 978-1-62708-190-0
... , ASM Handbook , 1989 , p 536 – 548 2. Zenger D.C. , Ludwig R. , Zhang R. , and McCabe I. , Detecting Cracks in Green PM Components , Advances in Powder Metallurgy & Particulate Materials – 1995 , compiled by Phillips M. and Porter J. , Metal Powder...
Abstract
The potential for introducing defects during processing becomes greater as the relative density of pressed and sintered powder metallurgy (PM) parts increases and more multilevel parts with complex geometric shapes are produced. This article discusses the potential defects in pressed and sintered PM parts: density variations, compaction and ejection cracks, microlaminations, poor degree of sintering, and voids from prior lubricant agglomerates. It describes the various methods applicable to green compacts: direct-current resistivity testing, radiographic techniques, computed tomography, and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density determination, and visual inspection.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
...-strengthened aluminum alloys fusion welding material selection powder metallurgy rapid solidification solid-state welding weldability CONVENTIONAL HIGH-STRENGTH ALUMINUM ALLOYS produced via ingot metallurgy (I/M) processing contain precipitate particles that interact with moving dislocations, thus...
Abstract
Conventional high-strength aluminum alloys produced via powder metallurgy (P/M) technologies, namely, rapid solidification (RS) and mechanical alloying (mechanical attrition) have high strength at room temperature and elevated temperature. This article focuses on the metallurgy and weldability of dispersion-strengthened aluminum alloys based on the aluminum-iron system that are produced using various RS-P/M processing techniques. It describes weldability issues related to weld solidification behavior, the formation of hydrogen-induced porosity in the weld zone, and the high-temperature deformation behavior of these alloys, which affect the selection and application of fusion and solid-state welding processes. The article provides specific examples of material responses to welding conditions and highlights the microstructural development in the weld zone.
1