Skip Nav Destination
Close Modal
By
Rajiv Shivpuri
By
Roger N. Wright
By
George E. Dieter
By
Milton C. Shaw, Gabriel J. DeSalvo
By
Peter J. Blau
By
Dongbin Wei, Wenzhen Xia, Zhengyi Jiang, Liang Hao
Search Results for
friction hill
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 350
Search Results for friction hill
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Friction hill in plane-strain compression with a constant coefficient of fr...
Available to Purchase
in Modeling of Deformation Processes—Slab and Upper Bound Methods
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 3 Friction hill in plane-strain compression with a constant coefficient of friction. Source: Ref 14
More
Book Chapter
Modeling of Deformation Processes—Slab and Upper Bound Methods
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005456
EISBN: 978-1-62708-196-2
..., the forces (or stresses) are balanced on the differential element, with friction taken as uniform at the tool-slab boundary. This results in a friction hill that is linear for the friction factor model and nonlinear for the coefficient of friction model, with the die pressure increasing from the open...
Abstract
This article focuses on approximate closed-form analytical methods, such as slab and upper bound methods, used for forward and inverse design of metal forming problems. Selected examples of application of these methods to metal forming processes are also discussed.
Image
Coefficient of friction according to the formulae for cold rolling of carbo...
Available to PurchasePublished: 01 December 2009
Fig. 2 Coefficient of friction according to the formulae for cold rolling of carbon steel by Hill, Roberts, and Ekelund. Source: Ref 43
More
Book Chapter
Sheet Metal Forming Simulation
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005540
EISBN: 978-1-62708-197-9
... and springback analysis: the type of solution algorithm/governing equation and the type of element. The article provides information on various models for material yield criteria. finite element methods friction sheet metal forming springback analysis SOFTWARE PROGRAMS continue to provide...
Abstract
Simulation programs are becoming more effective tools in reducing the need for physical testing and the avoidance of costly downstream problems by solving the problems upfront in the early development stage. This article provides a brief review of the history and applied analysis of simple forming operations. It focuses on metal stamping simulation based on the finite-element methods or model (FEM) with emphasis on software tools using the three-dimensional FEM technology. The article discusses two aspects of particular importance in finite-element analysis of sheet forming and springback analysis: the type of solution algorithm/governing equation and the type of element. The article provides information on various models for material yield criteria.
Book Chapter
Environmental and Application Factors in Solid Friction
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006410
EISBN: 978-1-62708-192-4
..., the frictional force, and, thus, the die pressure must also increase, leading to the development of the so-called friction hill ( Fig. 12b ). Consequently, die pressure can be very much higher than would be expected from the yield stress of the workpiece material. One of the aims of the theory of metalworking...
Abstract
This article focuses on environmental and application factors in solid friction. It covers the tribology of contact between a soft and hard material, including mechanisms and testing. The article describes the tribology of contact between a metal and tool during metalworking processes. It also discusses the tribology of metal friction at elevated temperatures.
Book Chapter
Workability and Process Design in Extrusion and Wire Drawing
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009006
EISBN: 978-1-62708-185-6
... state germane to centerbursts is not developed. Second, the flow stress may be obscured by uncertain “friction-hill” effects at the sample ends. Third, the fractures are generally at the surface, and the workability of material in the interior of the workpiece may not be reflected. On the other hand...
Abstract
Workability is the ability of the workpiece metal to undergo extrusion or drawing without fracture or defect development. This article describes the limits of workability in extrusion and drawing in terms of fracture and flaw development and presents some comments on fracture mechanisms. It discusses the empirical projections of absolute workability from various mechanical tests. The article concludes with a discussion on extrusion and drawing process design implications.
Book Chapter
Evaluation of Workability for Bulk Forming Processes
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... at the interface, it barrels, and the friction-hill pressure distribution is created over the interface. The inhomogeneity of deformation throughout the cross section leads to a dead zone at the tool interface and a region of intense shear deformation. A similar situation can arise when the processing tools...
Abstract
This article focuses on the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. It informs that workability depends on the local conditions of stress, strain, strain rate, and temperature in combination with material factors. The article discusses the common testing techniques and process variables for workability prediction. It illustrates the simple and most widely used fracture criterion proposed by Cockcroft and Latham and provides a workability analysis using the fracture limit line. The article describes various workability tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002372
EISBN: 978-1-62708-193-1
... If στδ and στδ crit can be experimentally determined, then the designer can use this value as a design guide. Note that both the slip amplitude and the shear stress depend on the coefficient of friction (with opposite responses) and the imposed loading. Analysis by Nowells and Hill ( Ref 15...
Abstract
Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. This article focuses on measures to avoid or minimize crack initiation and fretting fatigue. It lists the factors that are known to influence the severity of fretting and discusses the variables that contribute to shear stresses. These variables include normal load, relative displacement (slip amplitude), and coefficient of friction. The article describes the general geometries and loading conditions for fretting fatigue. It presents the types of fretting fatigue tests and the effect of variables on fretting fatigue from different research test programs. The article also lists the general principles and practical methods for the abatement or elimination of fretting fatigue.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003316
EISBN: 978-1-62708-176-4
... amplitude and the shear stress depend on the coefficient of friction (with opposite responses) and the imposed loading. Analysis by Nowell and Hills ( Ref 15 ) of this work provided a theoretical justification and a possible method for predicting “initiation” (or nucleation) time based on the total...
Abstract
Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. During fretting fatigue, cracks can initiate at very low stresses, well below the fatigue limit of nonfretted specimens. This article describes the mechanisms of fretting and fretting fatigue; stress analysis, modeling, and prediction of fretting fatigue; fretting fatigue testing; and fretting prevention methods. Three general geometries and loading conditions for fretting fatigue, along with their remedies, are reviewed.
Book Chapter
The Role of Elasticity in Hardness Testing
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009224
EISBN: 978-1-62708-176-4
... values. Basically, the hardness test is a measure of the resistance a material offers to plastic flow. The simple compression test, Fig. 2 , provides another measure of resistance to plastic flow that is more widely used in design analysis. If friction is kept to a low value on the die faces...
Abstract
A newly developed theory on plasticity makes it possible to include elastic effects, which play a major role when using blunt hardness indenters. This article reviews the new theory and explains several phenomena associated with practical hardness testing. In the indentation hardness test, a blunt indenter that approximates a flat punch is forced into a plane surface. The effective cone angle for most indenters is such that some upward flow results even when there is sufficient material surrounding the indenter to provide a full elastic constraint. When loaded by a blunt indenter, materials with high values of Young's Modulus of Elasticity/uniaxial flow stress (E/Y) (metals) appear to develop a Hertzian stress distribution over the contact. In contrast, materials with low values of E/Y (glasses and polymers) develop a uniform distribution of stress.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009007
EISBN: 978-1-62708-185-6
... with Hill's variational principle ( Ref 12 ), the authors developed the following expression for the uniaxial compressive flow stress. This assumes a von Mises yield criterion and an interface friction factor m = 3 τ i / σ 0 where τ i is the interfacial shear (friction) component...
Abstract
This article discusses a number of workability tests that are especially applicable to the forging process. The primary tests for workability are those for which the stress state is well known and controlled. The article provides information on the tension test, torsion test, compression test, and bend test. It examines specialized tests including plane-strain compression test, partial-width indentation test, secondary-tension test, and ring compression test. The article explains that workability is determined by two main factors: the ability to deform without fracture and the stress state and friction conditions present in the bulk deformation process. These two factors are described and brought together in an experimental workability analysis.
Book Chapter
Introduction to Adhesion, Friction, and Wear Testing
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003279
EISBN: 978-1-62708-176-4
.... Moore D.F. , Principles and Applications of Tribology , Pergamon Press , Oxford , 1975 , p 62 – 85 Selected References Selected References • Bhushan B. and Gupta B.K. , Handbook of Tribology , McGraw-Hill , 1991 • Friction and Wear Testing Source Book , ASM...
Abstract
This article discusses the tests designed specifically to evaluate the adhesion, friction, and wear behavior of various material systems. It tabulates the characteristics of common types of wear and mechanical surface damage. The article also considers the displaying and analyzing of adhesion, friction, and wear test data. It concludes with a description of devices used for testing adhesion, friction, and wear.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009003
EISBN: 978-1-62708-185-6
... at the interface, it barrels, and the friction-hill pressure distribution is created over the interface. The inhomogeneity of deformation throughout the cross section leads to a dead zone at the tool interface and a region of intense shear deformation. A similar situation can arise when the processing tools...
Abstract
This article provides the definitions of stress and strain, and describes the relationship between stress and strain by stress-strain curves and true-stress/true-strain curves. The emphasis is on understanding the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. The article reviews the process variables that influence the degree of workability and summarizes the mathematical relationships that describe the occurrence of room-temperature ductile fracture under workability conditions. It discusses the most common situations encountered in multiaxial stress states. The construction of a processing map based on deformation mechanisms is also discussed.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009009
EISBN: 978-1-62708-185-6
... Deformation , J. Inst Met. , Vol 93 , 1964–1965 , p 38 – 46 18. Male A.T. , Variations in Friction Coefficients of Metals During Compressive Deformation , J. Inst. Met. , Vol 94 , 1966 , p 121 – 125 19. Avitzur B. , Metal Forming Processes and Analysis , McGraw-Hill , 1968...
Abstract
This article describes the use of compression tests, namely, cylindrical compression, ring compression, and plane-strain compression tests at elevated temperatures. It discusses the effects of the temperature, strain rate, and deformation heating on metals during the cylindrical compression test, with the help of flow curves. The article illustrates the testing apparatus used in the cylindrical compression test. It describes the issues regarding friction and temperature, and strain-rate control with proper test equipment and experimental planning during the ring compression test and plane-strain compression test. The article also reviews the testing conditions, procedures, and advantages of hot plane-strain compression test.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006385
EISBN: 978-1-62708-192-4
... by the pressing stem. Because of a phenomenon called friction hill, where the pressure becomes large for thin sections, it is impossible to extrude all of the material from square dies; in any case a thin layer of material (butt) remains in the container. The butt may consist only of the dummy block material...
Abstract
This article discusses two basic forms of extrusion: cold and hot. It provides information on three types of extrusion processes, namely, direct extrusion, reverse extrusion, and hydrostatic extrusion. The article also discusses the mechanics, analysis, tooling and die design of extrusion as well as thermodynamics. The finite-element method suitable for simulation of metal forming processes is explained. The article examines the extrusion defects that are divided into three different categories including surface, subsurface, and internal type. It includes information on friction and lubrication modeling of extrusion processes. The article also discusses the fundamentals of extrusion technology of titanium alloys and aluminum. It concludes with information on two forms of wear in extrusion, namely, adhesive and abrasive wear.
Book Chapter
Lubrication and Wear in Rolling
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006422
EISBN: 978-1-62708-192-4
... along the contact length is significant. A sense of this variation can be obtained from the plot in Fig. 7 . Pressure reaches a maximum at the neutral point, and trails off on either side to the entrance and exit points, which is called friction hill. Relative movements within the arc of contact...
Abstract
Rolling is the process of reducing the thickness or changing the cross section of a workpiece by compressive forces applied through a set of rolls. This article emphasizes flat rolling and illustrates basic flat-rolling process used to reduce the thickness of a rectangular cross section. It provides a discussion on hot rolling, cold rolling, and warm rolling, as well as lubrication in rolling. The article reviews the lubrication for iron-base and nickel-base materials, light metals, copper-base alloys, and titanium alloys. It discusses the wear mechanism in rolling: abrasion, adhesion, and fatigue, as well as oxidative and corrosive wear. Surface modification techniques, such as hardening by induction heat treating, weld overlay, thermal spray coating, coating via physical vapor deposition (PVD), and laser surface treatment, are also discussed for improving roll service life.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003265
EISBN: 978-1-62708-176-4
.... (b) Shearing, when L / D > 2.5. (c) Double barreling, when L / D > 2.0 and friction is present at the contact surfaces. (d) Barreling, when L / D < 2.0 and friction is present at the contact surfaces. (e) Homogenous compression, when L / D < 2.0 and no friction is present...
Abstract
Compression tests are used for subscale testing and characterizing the mechanical behavior of anisotropic materials. This article discusses the characteristics of deformation during axial compression testing, including deformation modes, compressive properties, and compression-test deformation mechanics. It describes the procedures for the use of compression testing for the measurement of the deformation and fracture properties of materials. The article provides a detailed discussion on the technique involved in determining the stress-strain behavior of metallic materials based on the ASTM E 9, "Compression Testing of Metallic Materials at Room Temperature." It also reviews the factors that influence the generation of test data for tests conducted in accordance with the ASTM E 9 and the capabilities of conventional universal testing machines for compression testing.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003030
EISBN: 978-1-62708-200-6
... Abstract Tribology is the science and technology of interacting surfaces in relative motion or, the study of friction, wear, and lubrication. This article focuses on friction and wear processes that aid in the evaluation and selection of materials, for polymers and some composites used...
Abstract
Tribology is the science and technology of interacting surfaces in relative motion or, the study of friction, wear, and lubrication. This article focuses on friction and wear processes that aid in the evaluation and selection of materials, for polymers and some composites used in friction and wear applications. It provides information on friction, types of wear, and lubrication. The article includes a brief description of the friction and wear test methods, laboratory-scale friction, and wear testing, usually performed either to rank the performance of candidate materials for an application or to investigate a particular wear process. It describes the wear tests conducted with/without abrasives and explains the concept of PV limit (where P is contact pressure and V is velocity). The article concludes with references and tables of friction and wear test data for polymeric materials.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006398
EISBN: 978-1-62708-192-4
..., and the practical aspects and solutions in the friction, lubrication, and wear mitigation of sliding bearings. The lubrication of bearings includes thick-film lubrication, thin-film lubrication, and boundary lubrication. The article concludes with a discussion on the effects of material elasticity...
Abstract
Bearings are usually provided where a specific spatial relationship (alignment) must be maintained between the parts or where a force is to be transmitted from one part to the other. This article introduces the general types and configuration of sliding bearings, bearing materials, and the practical aspects and solutions in the friction, lubrication, and wear mitigation of sliding bearings. The lubrication of bearings includes thick-film lubrication, thin-film lubrication, and boundary lubrication. The article concludes with a discussion on the effects of material elasticity on the lubrication of bearings.
Book Chapter
Useful Formulas for Metals Processing
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005542
EISBN: 978-1-62708-197-9
... Kinetic energy Thermal energy Dissipation 12 Euler number Eu = Δ p ρ V 2 Frictional pressure loss 2 × velocity head Fluid friction in conduits 11 Fanning fraction factor f = D ′ Δ p 2 ρ V 2 L = 2 τ w...
Abstract
This article is a comprehensive collection of tables containing formulas for metals processing, namely, casting and solidification, flat (sheet) rolling, conical-die extrusion, wire drawing, bending, and deep drawing. Formulas for compression, tension, and torsion testing of isotropic materials are included. The article also lists the formulas for effective stress, strain, and strain rate (isotropic material) in arbitrary and principal coordinates; dimensionless groups in fluid mechanics; and anisotropic sheet materials at various loading conditions.
1