Skip Nav Destination
Close Modal
Search Results for
fretting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 412 Search Results for
fretting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... Abstract This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration...
Abstract
This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration, type of contact and vibration, impact fretting, surface finish, and residual stresses. The form, composition, and role of the debris are briefly discussed. The article also describes the measurement, mechanism, and prevention of fretting wear. It concludes with several examples of failures related to fretting wear.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002372
EISBN: 978-1-62708-193-1
... Abstract Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. This article focuses on measures to avoid or minimize crack initiation and fretting fatigue. It lists...
Abstract
Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. This article focuses on measures to avoid or minimize crack initiation and fretting fatigue. It lists the factors that are known to influence the severity of fretting and discusses the variables that contribute to shear stresses. These variables include normal load, relative displacement (slip amplitude), and coefficient of friction. The article describes the general geometries and loading conditions for fretting fatigue. It presents the types of fretting fatigue tests and the effect of variables on fretting fatigue from different research test programs. The article also lists the general principles and practical methods for the abatement or elimination of fretting fatigue.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006414
EISBN: 978-1-62708-192-4
... Abstract Fretting is the small-amplitude oscillatory movement that can occur between contacting surfaces, which are nominally at rest. This article discusses fretting wear in mechanical components and the mechanisms of fretting wear. It describes the role of fretting conditions...
Abstract
Fretting is the small-amplitude oscillatory movement that can occur between contacting surfaces, which are nominally at rest. This article discusses fretting wear in mechanical components and the mechanisms of fretting wear. It describes the role of fretting conditions, such as fretting duration, slip amplitude, normal load, fretting frequency, contact geometry, type of vibration, and surface finish, as well as the role of environmental conditions. The article reviews the influence of an aqueous environment on the mechanism of fretting. The steps that can be taken to reduce or eliminate damage due to fretting are extremely diverse. The article presents some general indications of how to address the fretting wear problem.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... Abstract Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology...
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003316
EISBN: 978-1-62708-176-4
... Abstract Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. During fretting fatigue, cracks can initiate at very low stresses, well below the fatigue limit of nonfretted...
Abstract
Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. During fretting fatigue, cracks can initiate at very low stresses, well below the fatigue limit of nonfretted specimens. This article describes the mechanisms of fretting and fretting fatigue; stress analysis, modeling, and prediction of fretting fatigue; fretting fatigue testing; and fretting prevention methods. Three general geometries and loading conditions for fretting fatigue, along with their remedies, are reviewed.
Image
Published: 01 January 2002
Fig. 30 Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head. (a) Overview of wear on plate hole showing mechanical and pitting corrosion attack. 15×. (b) Higher-magnification view of shallow
More
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Fig. 35 Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head. (a) Overview of wear on plate hole showing mechanical and pitting corrosion attack. 15×. (b) Higher-magnification view of shallow
More
Image
Published: 15 January 2021
Fig. 7 Schematic of a basic fretting wear test and related fretting cycle. Adapted from Ref 41 . Reprinted with permission from Elsevier
More
Image
Published: 15 January 2021
Fig. 8 Schematic illustration of partial slip fretting, gross slip fretting, and reciprocation sliding conditions as a function of the displacement amplitude (e.g., sphere-on-flat contact). Adapted from Ref 43 . Reproduced with permission from P.J. Kennedy, M.B. Peterson, and L. Stallings
More
Image
Published: 15 January 2021
Fig. 9 Diagram showing the mixed fretting regime fretting log (i.e., plotting of the fretting cycle as a function of a log scale of the fretting cycles). Adapted from Ref 49 . Reprinted with permission from Elsevier
More
Image
Published: 15 January 2021
Fig. 20 Fretting wear weight loss versus fretting cycles for mild steel under gross slip 90 μm displacement amplitude in both dry air and nitrogen atmosphere. Adapted from Ref 74
More
Image
Published: 15 January 2021
Image
Published: 15 January 2021
Fig. 42 Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head. (a) Overview of wear on plate hole showing mechanical and pitting corrosion attack. Original magnification: 15×. (b) Higher
More
Image
Published: 15 January 2021
Fig. 3 Examples of fretting corrosion. (a) Fretting corrosion in bearings typically occurs in the loose fit between the outer ring and the housing or between the inner ring and shaft. Source: Ref 13 . Reprinted with permission from SKF Group. (b) Fretting corrosion between femoral stem
More
Image
Published: 01 January 2002
Fig. 6 Fretting on the outside surface of steel backing of a sliding bearing.
More
Image
Published: 01 January 2002
Fig. 9 Severe damage from fretting (false brinelling) on the surface of a shaft that served as the inner raceway for a needle-roller bearing.
More
Image
Published: 01 January 2002
Fig. 10 Automotive front-wheel bearing that failed by fretting of raceways on inner and outer 52100 steel rings. Dimensions given in inches
More
Image
Published: 01 January 2002
Fig. 32 Wear on head of titanium screw. (a) Material transport and fretting zone. (b) Close-up view of wear structures showing fine wear products. 120×. (c) Wear structures showing generation of small wear particles. 1200×. (d) Wear structures with additional fretting structures. 305×
More
Image
Published: 01 January 2002
Fig. 1 Fretting damage incurred in a bearing shell component because of insufficient contact pressure between the shell and housing of a bearing. Source: Ref 7
More
1