Skip Nav Destination
Close Modal
Search Results for
free-machining additives
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1615 Search Results for
free-machining additives
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1989
Fig. 31 Effect of the total amount of free-machining additives present in the steel on the volume of metal removed in a grindability test. Source: Ref 33
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006103
EISBN: 978-1-62708-175-7
..., green machining, presintering, microcleanliness improvement, free-machining additives, microstructure modification, and improvements in tool materials. The effects of free-machining agents on machinability and the sintered properties of PM steels are also reviewed. free-machining additives green...
Abstract
Machinability is more important in extending the applications of powder metallurgy (PM). This article provides an overview of the machining process and machinability measurement of PM steels. It discusses various approaches to improve machinability, including the closure of porosity, green machining, presintering, microcleanliness improvement, free-machining additives, microstructure modification, and improvements in tool materials. The effects of free-machining agents on machinability and the sintered properties of PM steels are also reviewed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003186
EISBN: 978-1-62708-199-3
... of decreasing machinability. It also shows the range of dimensional and surface finish tolerances in graphical form that can be achieved using various machining processes under general machining conditions. dimensional tolerance free-machining additives free-machining alloys grinding machine tools...
Abstract
Machining is a term that covers a large collection of manufacturing processes designed to remove unwanted material, usually in the form of chips, from a workpiece. This article discusses the basic classes of machining operations, including conventional, abrasive, and nontraditional, and outlines the type of costs incurred by the process. It describes the types of machining equipment, including general-purpose machine tools, production machining systems, and computer numerically controlled machining systems. The article lists the common classes of metallic work materials, in order of decreasing machinability. It also shows the range of dimensional and surface finish tolerances in graphical form that can be achieved using various machining processes under general machining conditions.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002179
EISBN: 978-1-62708-188-7
... harmful on cutting tool flank wear by abrasion. Soft particles, such as manganese sulfide (MnS) and free-machining additives (for example, lead and bismuth), promote ductile fracture during machining. Under certain conditions, soft particles of lead or MnS particles encapsulated with lead will lubricate...
Abstract
This article describes the influence of steel chemical compositions and microstructure on machining processes. It discusses the various microstructural phases of standard carbon and alloy steels, which influence machinability. The article reviews the expected response of several traditional machining operations, such as turning, drilling, milling, shaping, thread cutting, and grinding, to the microstructure of standard steel grades. It also explains the technologies in non-traditional machining processes, such as abrasive waterjet cutting, electrical chemical grinding, and laser drilling.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003116
EISBN: 978-1-62708-199-3
... are the free-machining alloys, which contain a free-machining additive to form inclusions that significantly improve overall machining characteristics. The structures of low-alloy martensitic and ferritic stainless steels make these types somewhat brittle, resulting in reasonably good chip breakage...
Abstract
Fabrication of wrought stainless steels requires use of greater power, more frequent repair or replacement of processing equipment, and application of procedures to minimize or correct surface contamination because of its greater strength, hardness, ductility, work hardenability and corrosion resistance. This article provides a detailed account of such difficulties encountered in the fabrication of wrought stainless steel by forming, forging, cold working, machining, heat treating, and joining processes. Stainless steels are subjected to various heat treatments such as annealing, hardening, and stress relieving. Stainless steels are commonly joined by welding, brazing, and soldering. The article lists the procedures and precautions that should be instituted during welding to ensure optimum corrosion resistance and mechanical properties in the completed assembly.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003191
EISBN: 978-1-62708-199-3
.... aluminum alloys Brinell hardness carbide size cast iron cutting speed free-machining additives graphite hardness testing inclusion machinability microstructures steels tool life Cast Irons THE MACHINABILITY OF IRON relates specifically to its microstructure. The shape of the graphite...
Abstract
An understanding of the influence of microstructure on machinability can provide an insight into more efficient machining and the correct solution to problems. Providing numerous microstructures to depict examples, this article describes the relationship between the microstructure and machinability of cast irons, steels, and aluminum alloys. It presents data on hardness values and the effect of the matrix microstructure of cast iron on tool life. It also explains how a higher inclusion count improves the machinability of steels and why aluminum alloys can be machined at very high speeds.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002180
EISBN: 978-1-62708-188-7
... of heat treatment used, rather than microstructure. In addition, stainless steels can be divided into the nonfree-machining alloys and the free-machining alloys. Free-machining alloys form a limited group that includes some of the alloys of the five basic families. Nonfree-machining and free-machining...
Abstract
The machinability of stainless steels varies from low to very high, depending on the final choice of the alloy. This article discusses general material and machining characteristics of stainless steel. It briefly describes the classes of stainless steel, such as ferritic, martensitic, austenitic, duplex, and precipitation-hardenable alloys. The article examines the role of additives, such as sulfur, selenium, tellurium, lead, bismuth, and certain oxides, in improving machining performance. It provides ways to minimize difficulties involved in the traditional machining of stainless steels. The article describes turning, drilling, tapping, milling, broaching, reaming, and grinding operations on stainless steel. It concludes with information on some of the nontraditional machining techniques, including abrasive jet machining, abrasive waterjet machining electrochemical machining, electron beam machining, and plasma arc machining.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006104
EISBN: 978-1-62708-175-7
... Free-machining benefits can be obtained by means of small additions to a standard powder composition. Additives for ferrous powders include lead, sulfur, copper, graphite, as well as complex sulfides, oxides, and other compounds (many of which are patented, proprietary, and/or trademarks of specific...
Abstract
This article provides a discussion on the machining guidelines that serve to improve the machinability of powder metallurgy materials. It provides a description of various cutting tool grades and tool-edge design and describes the machining conditions for common operations, namely, turning, drilling, tapping, grinding, and finishing. The article introduces a few overlooked details that can heavily influence the performance and success of the machining process. These include dwell, margin design on round tools, and proper edge hone.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002487
EISBN: 978-1-62708-194-8
... of equivalent chemistry. Most material classes include “free-machining” alloys, which contain alloy additives that increase tool life or chip formation characteristics. Free-machining additives are typically substances that form inclusions in the matrix that serve to break chips and provide internal...
Abstract
Machining or material removal processes are secondary manufacturing operations that are used to achieve precise tolerances or to impart controlled surface finishes to a part. This article summarizes rules for designing parts to improve machined part quality and reduce machining costs in mass and batch production environments. It discusses the factors affecting the total cost of a machining operation, including raw material costs, labor costs, and equipment costs. The article describes three types of machining systems, namely, general-purpose machine tools, production machining systems, and computer numerically controlled (CNC) machining systems. It reviews general design-for-machining rules that are applicable to all parts, regardless of the type of equipment used to produce them. Special considerations for production machining systems and CNC machining systems are discussed. The article describes the structure and typical uses of computer-aided process planning and design-for-manufacturing programs.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001033
EISBN: 978-1-62708-161-0
... of the various attributes of carbon and alloy steels on machining characteristics. It lists the relative machinability ratings for some plain carbon steels, standard resulfurized steels, and several alloy steels. The addition of lead to carbon steels is one of the means of increasing the machinability...
Abstract
The machinability of carbon and alloy steels is affected by many factors, such as the composition, microstructure, and strength level of the steel; the feeds, speeds, and depth of cut; and the choice of cutting fluid and cutting tool material. This article describes the influence of the various attributes of carbon and alloy steels on machining characteristics. It lists the relative machinability ratings for some plain carbon steels, standard resulfurized steels, and several alloy steels. The addition of lead to carbon steels is one of the means of increasing the machinability of the steel and improving the surface finish of machined parts. Low carbon content of carburizing steels may be beneficial to tool life and production rate. The sulfur content of through-hardening alloy steels can significantly affect machining behavior. Cold drawing generally improves the machinability of steels containing less than about 0.2% carbon.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006119
EISBN: 978-1-62708-175-7
... ( Ref 15 ). Free-machining grades of stainless steel contain small amounts of sulfur or selenium to help improve machinability. The improved machinability of these steels is attributed to two mechanisms: the additives coat and lubricate the tool tip, thus preventing built-up edges...
Abstract
Powder metallurgy (PM) stainless steels, as with conventional PM steels, are often used in the as-sintered condition. In addition to cost considerations, minimization of postsinter handling and secondary operations is also preferred because it reduces the potential for contamination of the parts with particulates and residues, which can result in the appearance of surface rust. This article provides information on various secondary operations, including tumbling, re-pressing, resin impregnation, annealing or heat treating, brazing, machining, and welding. It describes those aspects relating to welding of PM stainless steels, specifically, the effects of density, residual porosity, and sintered chemistry on weldability. Further, the article investigates the influence the sintering atmosphere has on machinability, as well as differences created by the presence of residual porosity.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006713
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on composition limits, heat treatment, processing effects on physical and mechanical properties, and applications of free-machining aluminum alloys 6033, 6040 and 6041. aluminum alloy 6033 aluminum alloy 6040 aluminum alloy 6041 chemical...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002126
EISBN: 978-1-62708-188-7
... for various materials. The more negative the free energy, the more chemically inert or corrosion resistant the material should be. In Fig. 5 , the free energy of Si 3 N 4 falls within the range of cemented carbides, while Al 2 O 3 has the most negative free energy. Therefore, an Al 2 O 3 additive should...
Abstract
Ceramics are materials with the potential for a wide range of high-speed finishing operations and for high removal rate machining of difficult-to-machine materials. This article describes the production process, composition, properties, and applications of ceramic tool materials. It presents a comprehensive discussion on the properties and composition of alumina-base tool materials, including alumina and titanium carbide, alumina-zirconia, and silicon carbide whisker reinforced alumina, and silicon nitride base tool materials.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006975
EISBN: 978-1-62708-439-0
... and machine learning include design, process-structure-properties (PSP) relationships, and process monitoring and quality control. The article also presents tools used for data analytics. data analytics machine learning metal additive manufacturing ADDITIVE MANUFACTURING (AM) is a process...
Abstract
This article presents the analytics challenges in additive manufacturing. It discusses the types and applications of data analytics. Data analytics can be classified into four types: descriptive, diagnostic, predictive, and prescriptive. The diverse applications of data analytics and machine learning include design, process-structure-properties (PSP) relationships, and process monitoring and quality control. The article also presents tools used for data analytics.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005610
EISBN: 978-1-62708-174-0
... produce defect-free and structurally sound welds. Existing process controls in EB welding typically are directed at controlling the essential machine settings, which include the accelerating voltage, beam current, focus coil current, vacuum level, travel speed, and work distance ( Ref 1 ). Additional...
Abstract
The primary goal of quality control in electron beam (EB) welding is to consistently produce defect-free and structurally sound welds. This article discusses the common procedures for controlling the EB welding process, the control of the essential machine parameters, and the introduction of closed-loop controls and diagnostic feedback systems in the EB welding systems. It reviews the beam diagnostic tools that interrogate the beam to produce a reconstruction of the power density distribution and provide additional information on the size and shape of the EB. Knowledge of these beam parameters can be used to improve process understanding and control. The article also describes the application areas of beam diagnostics: machine characterization, weld parameter transfer, and weld quality control.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002449
EISBN: 978-1-62708-194-8
... that represent build times for each of the three classes. area sequential volume addition computer-aided design models extrusion deposition fused deposition modeling numerical control machining periphery cutting rapid prototyping selective cure layered process selective laser sintering sheet form...
Abstract
Rapid prototyping (RP) is a field in manufacturing involving techniques/devices that produce prototype parts directly from computer-aided design models in a fraction of time. This article discusses the principles of RP and three major commercial processes, based on their layer creation method. These include selective cure layered processes, extrusion/droplet deposition processes, and sheet form fabricators. The article provides information on the three classes of RP, namely, voxel sequential volume addition, periphery cutting, and area sequential volume addition. It presents equations that represent build times for each of the three classes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... of these additives impart different combinations of wear resistance, thermal shock resistance, and toughness, and they allow tools to be tailored for a wide range of machining applications. The newer cermets are used in semifinishing and finishing of carbon and alloy steels, stainless steels, ductile irons, free...
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a ductile metal binder. Cermet refers to a composite of a ceramic material with a metallic binder. This article discusses the manufacture, composition, classifications, and physical and mechanical properties of cemented carbides. It describes the application of hard coatings to cemented carbides by physical or chemical vapor deposition (PVD or CVD). Tungsten carbide-cobalt alloys, submicron tungsten carbide-cobalt alloys, and alloys containing tungsten carbide, titanium carbide, and cobalt are used for machining applications. The article also provides an overview of cermets used in machining applications.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006595
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and general applications of free machining aluminum alloys 2011 and 2012. The effect of cutting speed on cutting force for different...
Abstract
This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and general applications of free machining aluminum alloys 2011 and 2012. The effect of cutting speed on cutting force for different aluminum alloys is also illustrated.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002143
EISBN: 978-1-62708-188-7
.... On these machines, several operations in addition to threading can be done in one cycle. Special Threading Machines Special threading machines are available that perform only die threading, on either cylindrical or irregular-shape parts. Workpieces can be loaded and unloaded by hand, or the machines can...
Abstract
This article discusses the types and operations of the most common machines used for die threading. The construction, types, and comparison of solid and self-opening dies are discussed. The article explains the modification of chasers for threading Monel shaft. The principal factors that influence thread quality, production rate, and cost in die threading are composition and hardness of work metal; accuracy and finish; thread size; obstacles, such as shoulders or steps; speed; lead control; and cutting fluid. The article examines these factors and describes the tools and cutting fluids used for pipe threading along with the severity of stop lines.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002193
EISBN: 978-1-62708-188-7
... of the microstructure by means of changes in chemical composition, the addition of free-machining additives, or various mechanical treatments ( Ref 1 , 5 , 6 ). These techniques often have limited influence because of interactions among different factors. Optimization techniques include adjustments in cutting...
Abstract
Powder metallurgy is a near-net shape process capable of producing complex parts with little or no need for secondary operations such as machining, joining, or assembly. However, the inability to produce certain geometrical figures such as transverse holes, undercuts, and threads frequently necessitates some machining, particularly drilling. This article provides a discussion on the measures that can optimize the machining of P/M materials. It reviews the factors influencing machinability of P/M components, including workpiece and tool material properties, cutting conditions, machine and cutting tool parameters as well as some P/M material and production process parameters. These parameters discussed include the particle size, part geometry, porosity, compaction and sintering methods. In addition, the article presents guidelines for the various machining processes, namely, turning and boring, milling, drilling, grinding, reaming, burnishing, tapping, and honing and lapping.
1