Skip Nav Destination
Close Modal
By
Gerald L. DePoorter, Terrence K. Brog, Michael J. Readey
By
Dale Wilson, Leif A. Carlsson
By
Howard A. Kuhn
By
J. Gilbert Kaufman
By
Steve Dawson, Wilson Guesser
By
James F. Lane, Daniel P. Dennies
Search Results for
fracture toughness-modulus chart
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 130
Search Results for fracture toughness-modulus chart
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002452
EISBN: 978-1-62708-194-8
...-modulus, and normalized strength-thermal expansion charts. The article examines the use of material property charts in presenting information in a compact and easily accessible manner. fracture toughness-density chart fracture toughness-modulus chart fracture toughness-strength chart loss...
Abstract
Properties of an engineering material have a characteristic range of values that are conveniently displayed on materials selection charts. This article describes the plotting of data on these charts. It discusses the features of various types of material property charts, namely, modulus-density, strength-density, fracture toughness-density, modulus-strength, specific stiffness-specific strength, fracture toughness-modulus, fracture toughness-strength, loss coefficient-modulus, thermal conductivity-thermal diffusivity, thermal expansion-thermal conductivity, thermal expansion-modulus, and normalized strength-thermal expansion charts. The article examines the use of material property charts in presenting information in a compact and easily accessible manner.
Book Chapter
7097 Plate Alloy
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006740
EISBN: 978-1-62708-210-5
... Abstract Alloy 7097 is a quench insensitive Al-Mg-Zn-Cu-Zr alloy engineered for the most advantageous combination of strength, corrosion resistance, and fracture toughness in thick structural applications. This datasheet provides information on key alloy metallurgy of alloy 7097 and processing...
Abstract
Alloy 7097 is a quench insensitive Al-Mg-Zn-Cu-Zr alloy engineered for the most advantageous combination of strength, corrosion resistance, and fracture toughness in thick structural applications. This datasheet provides information on key alloy metallurgy of alloy 7097 and processing effects on mechanical properties of alloy 7097-T7651 plate.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002453
EISBN: 978-1-62708-194-8
...; displacement-control K Ic / E and σ f Maximize flaw tolerance and strength; energy-control K Ic 2 / E and σ f Pressure vessel Yield-before-break K Ic /σ f Leak-before-break K Ic 2 / σ f (a) K Ic = fracture toughness; E = Young's modulus; σ f...
Abstract
This article defines performance indices in a formal way and specifies how they are derived. The performance indices for a light, strong tie and a light, stiff beam are presented. The article presents two case studies that illustrate the use of material indices, shape factors, and selection charts to select materials.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003352
EISBN: 978-1-62708-195-5
... ultimate-use temperature, offer superior fracture toughness, and prevent premature brittle failure. In a MMC, the primary function of a reinforcing fiber is to sustain the ultimate-use temperature of the part by preventing ductile failure. The value-in-use of a selected reinforcing fiber, whether based...
Abstract
Reinforcing fibers are a key component of polymer-matrix composites (PMCs), ceramic-matrix composites (CMCs), and metal-matrix composites (MMCs). This article discusses the mechanical and nonmechanical properties of these composites. It presents an overview of PMC, CMC, and MMC reinforcing fibers. The article describes cost-considered value-in-use of the ultimate-use temperature of selected fibers in three fiber categories: metal fibers or wires, oxide ceramic fibers, and non-oxide ceramic fibers.
Book Chapter
7099 High-Strength Plate
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006741
EISBN: 978-1-62708-210-5
.... In the T7651 temper, alloy 7099 has up to 15% higher ultimate strength and up to 20% higher yield strength than alloy 7050-T7451. In the T7451 temper, it has up to 10% higher ultimate strength and up to 15% higher yield strength than alloy 7050-T7451. Fracture toughness properties are typical. Composition...
Abstract
The aluminum alloy 7099 is a Kaiser aluminum high-strength Al-Mg-Zn-Cu alloy with zirconium that offers a less quench-sensitive alloy for properties in thicker sections for airframe structures such as wing ribs, spars, and skins, as well as fuselage frames and floor beams. This datasheet provides information on key alloy metallurgy and processing effects on mechanical properties of this 7xxx series alloy.
Book Chapter
Structural Ceramics
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001107
EISBN: 978-1-62708-162-7
... of various alumina ceramics Alumina content, % Bulk density, g/cm 3 Flexure strength, MPa (ksi) Fracture toughness, MPa m (ksi in. ) Hardness, GPa (10 6 psi) Elastic modulus, GPa (10 6 psi) Thermal conductivity, W/m · K (Btu/ft · h · °F) Linear coefficient of thermal...
Abstract
This article discusses the properties and uses of structural ceramics and the basic processing steps by which they are made. It describes raw material preparation, forming and fabrication, thermal processing, and finishing. It provides information on the composition, microstructure, and properties of aluminum oxides, aluminum titanate, silicon carbide, boron carbide, zirconia, silicon nitride, silicon-aluminum-oxynitride, and several ceramic composites. It also explains how these materials maintain their mechanical strength and dimensional tolerances at high temperatures and how some of their shortcomings are being addressed.
Book Chapter
Mechanical Testing of Fiber-Reinforced Composites
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003330
EISBN: 978-1-62708-176-4
... structures. Mechanical properties of a composite material refer to the elastic and strength properties of the material under tensile, shear, or compression loading. Other properties, such as fracture toughness and flexural strength and stiffness, are also useful in characterizing the performance...
Abstract
This article begins with a review of the purposes of mechanical characterization tests and the general considerations related to the mechanical properties of anisotropic systems, specimen fabrication, equipment and fixturing, environmental conditioning, and analysis of test results. It provides information on the specimen preparation, instrumentation, and procedures for various mechanical test methods of fiber-reinforced composites. These include the compression test, flexure test, shear test, open hole tension test, and compression after impact test. The article describes three distinct fracture modes, namely, crack opening mode, shearing mode, and tearing mode. It presents an overview of fatigue testing and fatigue damage mechanisms of composite materials and reviews the types of mechanical measurements that can be made during the course of testing to assess fatigue damage. The article concludes with a discussion on the split-Hopkinson pressure bar test.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003325
EISBN: 978-1-62708-176-4
... techniques include X-ray diffraction, neutron diffraction, Barkhausen noise analysis, and ultrasonic propagation analysis. The article concludes with an overview of weldability testing. bend strength ductility fracture toughness hardness hole drilling chip machining groove machining block...
Abstract
This article discusses the standard test methods that can be applied to many types of welds: tension, bending, impact, and toughness testing. It provides information on four qualification stages, namely, the weld material qualification, base material qualification, the weld procedure qualification, and the weld service assessment. The article describes two general types of measurements for residual stress in welds: locally destructive techniques and nondestructive techniques. Locally destructive techniques include hole drilling, chip machining, and block sectioning. Nondestructive techniques include X-ray diffraction, neutron diffraction, Barkhausen noise analysis, and ultrasonic propagation analysis. The article concludes with an overview of weldability testing.
Book Chapter
Overview of Mechanical Properties and Testing for Design
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003257
EISBN: 978-1-62708-176-4
.... mechanical properties material design material selection mechanical testing tensile testing compressive testing hardness testing torsion testing bend testing shear load testing shock loading fatigue testing creep testing stress fracture testing bending DESIGN is the ultimate function...
Abstract
An integral aspect of designing and material selection is the use of mechanical properties derived from various mechanical testing. This article introduces the basic concepts of mechanical design and its relation with the properties derived from various mechanical testings, namely, tensile, compressive, hardness, torsion and bend, shear load, shock, and fatigue and creep testings. It describes the design criteria for combined properties derived from each of the mechanical testing. The article concludes with a discussion on the effect of environment on the mechanical properties.
Book Chapter
Significance of Mechanical Properties in Design and Application
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006544
EISBN: 978-1-62708-210-5
... of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties. aluminum alloys bearing...
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002450
EISBN: 978-1-62708-194-8
... curve Yield strength Tension Compression Shear Ultimate strength Tension Shear Bearing Fatigue properties Smooth Notched Corrosion fatigue Rolling contact Fretting Charpy transition temperature Fracture toughness ( K Ic ) High-temperature...
Abstract
This article describes the process of materials selection in relation to the design process, such as materials selection for a new design and materials substitution for an existing design. It reviews the performance characteristics of materials using prototype tests or field tests to determine their performance under actual service conditions. The article describes the selection of a material in relation to the manufacturing process and presents the factors that influence materials selection based on costs and related aspects. These factors include metallurgical requirements, dimensions, processing, quantity, packing, marking, and loading. The article discusses how the needs for materials data evolve as a design proceeds from conceptual to detail design. It describes the methods of materials selection, namely, cost per unit property method, weighted property index method, and limits on properties method.
Book Chapter
Introduction to Mechanical Testing of Components
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003321
EISBN: 978-1-62708-176-4
... modulus, endurance limit, or fracture toughness. Wear and its corollary, wear resistance, are systems properties or responses. A summary of designing for wear resistance is provided in the article “Design for Wear Resistance” in Materials Selection and Design...
Abstract
This article describes the tests for the common types of fabricated components and modeling of metal deformation. It provides an overview of component testing and briefly reviews the relationship of mechanical properties in the process of mechanical design for static loads, cyclic loads, dynamic loads, and high-temperature materials. The article describes the general properties related to monotonic stress-strain behavior of steels. It also discusses materials properties and operating stresses as well as other factors, such as part shape and environmental effects, which play significant roles in the design process of components.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
... of interest Table 4 Common material properties of interest Mechanical properties Elastic moduli and stiffness Ultimate tensile strength Yield strength Ductility Modulus of rupture (flexural strength) Compressive strength Fatigue strength Impact strength Fracture toughness...
Abstract
The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered materials, including ferrous alloys, nonferrous alloys, ceramics, cermets and cemented carbides, engineering plastics, polymer-matrix composites, metal-matrix composites, ceramic-matrix and carbon-carbon composites, and reviews their general property characteristics and applications. It describes the synergy between the elements of the materials selection process and presents a general comparison of material properties. Finally, the article provides a short note on computer aided materials selection systems, which help in proper archiving of materials selection decisions for future reference.
Book Chapter
Microstructure and Characterization of Compacted Graphite Iron
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006317
EISBN: 978-1-62708-179-5
... on the impact toughness of CGI. The fracture toughness of CGI also has been studied from a fracture mechanics point of view. These studies confirm the abrupt increase in toughness as the graphite transitions from flake to compacted, followed by a gradual increase as the nodularity increases. Once...
Abstract
According to the ISO 16112 standard for compacted graphite cast irons (CGIs), the graphite particles in CGIs shall be predominantly in the vermicular form when viewed on a two dimensional plane of polish. This article begins with a schematic illustration of compacted graphite microstructures with nodularity. It describes the tensile properties, hardness and compressive properties, and impact properties of CGI. The article concludes with a discussion on the fatigue strength and thermal conductivity of CGI.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006308
EISBN: 978-1-62708-179-5
... in the foundry: liquid metal preparation, solidification, and solid-state transformation. The article discusses the tensile properties of gray cast iron: tensile strength, yield strength, ductility, and modulus of elasticity. It describes hardness tests that are performed for determining the approximate strength...
Abstract
Gray irons are commonly classified by their minimum tensile strength. This article describes properties used in the selection of gray irons and the factors that affect properties, particularly the effect of solidification. It discusses the three steps that its processing undergoes in the foundry: liquid metal preparation, solidification, and solid-state transformation. The article discusses the tensile properties of gray cast iron: tensile strength, yield strength, ductility, and modulus of elasticity. It describes hardness tests that are performed for determining the approximate strength characteristics and machinability of a gray iron casting. The article also presents typical mechanical properties of heat-resistant gray irons in a table. It concludes with information on the automotive application of alloy cast irons.
Book Chapter
Engineering Aspects of Failure and Failure Analysis
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003224
EISBN: 978-1-62708-199-3
... cause a corresponding decrease in the fracture toughness. Fracture toughness is related to other mechanical properties in the following expression: (Eq 13) K Ic = α n ( E σ ys ϵ f ) 1 / 2 where n is the strain-hardening exponent; E is Young's modulus...
Abstract
The primary goal of failure analysis is to prevent the recurrence of product failures. This article discusses the sequence of activities in failure analysis and offers insight on how to gather background information, examine and assess damage, and identify the cause of the problem. It also explains where to look for evidence and how to collect samples for various types of testing. In addition, the article provides an introduction to fracture mechanics and explains how to predict and avoid fractures, including fatigue fracture, through testing and computational techniques.
Book
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.9781627081948
EISBN: 978-1-62708-194-8
Book Chapter
Mechanical Testing in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... (unnotched) tension specimen loaded slowly and under controlled conditions to fracture. Notch toughness represents the ability of a material to absorb energy and is determined under impact loading in the presence of a notch. Notch toughness is measured by using a variety of specimens, such as the Charpy V...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005330
EISBN: 978-1-62708-187-0
... Design requirements are typically determined in terms of strength or maximum stress. The design is commonly constrained by elastic modulus, fatigue, toughness, or ductility. Increasing the strength of steel normally reduces the ductility, toughness, and weldability. It is often more desirable in steel...
Abstract
This article discusses the requirements that are typically considered in designing a steel casting. It describes the materials selection that forms a part of process of meeting the design criteria. The article provides information on the material selection guide for five major design applications. It examines the attributes that are specific to the manufacturing of steel castings. The article concludes with information on the various nondestructive examination methods available for ensuring manufacturing quality and part performance in steel castings.
Book Chapter
Engineering Tables: Ceramics and Glasses
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003004
EISBN: 978-1-62708-200-6
... Table 2 Mechanical properties of selected ceramics and glasses Material Tensile strength Modulus of elasticity Modulus of rupture Fracture toughness ( K Ic ) MPa ksi GPa 10 6 psi MPa ksi MPa m ksi in . Alumina (Al 2 O 3 ) 200–310 30–45 380 55 350–580...
Abstract
This article is a comprehensive collection of engineering property data in tabulated form for ceramics and glasses. Data are provided for physical and mechanical properties of ceramic materials and color of ceramics fired under oxidizing and reducing conditions. The article also lists the materials characterization techniques for ceramics and glasses.
1