Skip Nav Destination
Close Modal
By
Gerald L. DePoorter, Terrence K. Brog, Michael J. Readey
By
Renata Neves Penha, Lauralice C.F. Canale, Jan Vatavuk, Steven Lampman
By
R.J. Bucci, G. Nordmark, E.A. Starke, Jr.
By
James J. Scutti, William J. McBrine
By
Roch J. Shipley, Brett A. Miller, Ronald J. Parrington
By
James F. Lane, Daniel P. Dennies
By
Thomas W. Pelletiers, II, Wayne K. Daye
Search Results for
fracture toughness-density chart
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 157
Search Results for fracture toughness-density chart
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002452
EISBN: 978-1-62708-194-8
...-modulus, and normalized strength-thermal expansion charts. The article examines the use of material property charts in presenting information in a compact and easily accessible manner. fracture toughness-density chart fracture toughness-modulus chart fracture toughness-strength chart loss...
Abstract
Properties of an engineering material have a characteristic range of values that are conveniently displayed on materials selection charts. This article describes the plotting of data on these charts. It discusses the features of various types of material property charts, namely, modulus-density, strength-density, fracture toughness-density, modulus-strength, specific stiffness-specific strength, fracture toughness-modulus, fracture toughness-strength, loss coefficient-modulus, thermal conductivity-thermal diffusivity, thermal expansion-thermal conductivity, thermal expansion-modulus, and normalized strength-thermal expansion charts. The article examines the use of material property charts in presenting information in a compact and easily accessible manner.
Book Chapter
7097 Plate Alloy
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006740
EISBN: 978-1-62708-210-5
... Abstract Alloy 7097 is a quench insensitive Al-Mg-Zn-Cu-Zr alloy engineered for the most advantageous combination of strength, corrosion resistance, and fracture toughness in thick structural applications. This datasheet provides information on key alloy metallurgy of alloy 7097 and processing...
Abstract
Alloy 7097 is a quench insensitive Al-Mg-Zn-Cu-Zr alloy engineered for the most advantageous combination of strength, corrosion resistance, and fracture toughness in thick structural applications. This datasheet provides information on key alloy metallurgy of alloy 7097 and processing effects on mechanical properties of alloy 7097-T7651 plate.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002453
EISBN: 978-1-62708-194-8
... property limits and indices that are the key to optimizing the selection. Property limits are bounding values within which certain properties must lie if the material is to be considered further; typically, these are limits on fracture toughness, on maximum service temperature, or on corrosion resistance...
Abstract
This article defines performance indices in a formal way and specifies how they are derived. The performance indices for a light, strong tie and a light, stiff beam are presented. The article presents two case studies that illustrate the use of material indices, shape factors, and selection charts to select materials.
Book Chapter
Structural Ceramics
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001107
EISBN: 978-1-62708-162-7
... of various alumina ceramics Alumina content, % Bulk density, g/cm 3 Flexure strength, MPa (ksi) Fracture toughness, MPa m (ksi in. ) Hardness, GPa (10 6 psi) Elastic modulus, GPa (10 6 psi) Thermal conductivity, W/m · K (Btu/ft · h · °F) Linear coefficient of thermal...
Abstract
This article discusses the properties and uses of structural ceramics and the basic processing steps by which they are made. It describes raw material preparation, forming and fabrication, thermal processing, and finishing. It provides information on the composition, microstructure, and properties of aluminum oxides, aluminum titanate, silicon carbide, boron carbide, zirconia, silicon nitride, silicon-aluminum-oxynitride, and several ceramic composites. It also explains how these materials maintain their mechanical strength and dimensional tolerances at high temperatures and how some of their shortcomings are being addressed.
Book Chapter
7099 High-Strength Plate
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006741
EISBN: 978-1-62708-210-5
.... In the T7651 temper, alloy 7099 has up to 15% higher ultimate strength and up to 20% higher yield strength than alloy 7050-T7451. In the T7451 temper, it has up to 10% higher ultimate strength and up to 15% higher yield strength than alloy 7050-T7451. Fracture toughness properties are typical. Composition...
Abstract
The aluminum alloy 7099 is a Kaiser aluminum high-strength Al-Mg-Zn-Cu alloy with zirconium that offers a less quench-sensitive alloy for properties in thicker sections for airframe structures such as wing ribs, spars, and skins, as well as fuselage frames and floor beams. This datasheet provides information on key alloy metallurgy and processing effects on mechanical properties of this 7xxx series alloy.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003352
EISBN: 978-1-62708-195-5
... ultimate-use temperature, offer superior fracture toughness, and prevent premature brittle failure. In a MMC, the primary function of a reinforcing fiber is to sustain the ultimate-use temperature of the part by preventing ductile failure. The value-in-use of a selected reinforcing fiber, whether based...
Abstract
Reinforcing fibers are a key component of polymer-matrix composites (PMCs), ceramic-matrix composites (CMCs), and metal-matrix composites (MMCs). This article discusses the mechanical and nonmechanical properties of these composites. It presents an overview of PMC, CMC, and MMC reinforcing fibers. The article describes cost-considered value-in-use of the ultimate-use temperature of selected fibers in three fiber categories: metal fibers or wires, oxide ceramic fibers, and non-oxide ceramic fibers.
Book Chapter
Tempering of Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005815
EISBN: 978-1-62708-165-8
... Abstract Tempering of steel is a process in which hardened or normalized steel is heated to a temperature below the lower critical temperature and cooled at a suitable rate, primarily to increase ductility, toughness, and grain size of the matrix. This article provides an overview...
Abstract
Tempering of steel is a process in which hardened or normalized steel is heated to a temperature below the lower critical temperature and cooled at a suitable rate, primarily to increase ductility, toughness, and grain size of the matrix. This article provides an overview of the variables that affect the microstructure and mechanical properties of tempered steel, namely, the tempering temperature, tempering time, carbon content, alloy content, and residual elements. Tempering after hardening is performed to relieve quenching stresses and ensure dimensional stability of steel. The article discusses the embrittlement problems associated with tempering. Four types of equipment are used for tempering, namely, convection furnaces, salt bath furnaces, oil bath equipment and molten metal baths. Special procedures for tempering are briefly reviewed.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002450
EISBN: 978-1-62708-194-8
... curve Yield strength Tension Compression Shear Ultimate strength Tension Shear Bearing Fatigue properties Smooth Notched Corrosion fatigue Rolling contact Fretting Charpy transition temperature Fracture toughness ( K Ic ) High-temperature...
Abstract
This article describes the process of materials selection in relation to the design process, such as materials selection for a new design and materials substitution for an existing design. It reviews the performance characteristics of materials using prototype tests or field tests to determine their performance under actual service conditions. The article describes the selection of a material in relation to the manufacturing process and presents the factors that influence materials selection based on costs and related aspects. These factors include metallurgical requirements, dimensions, processing, quantity, packing, marking, and loading. The article discusses how the needs for materials data evolve as a design proceeds from conceptual to detail design. It describes the methods of materials selection, namely, cost per unit property method, weighted property index method, and limits on properties method.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
... of interest Table 4 Common material properties of interest Mechanical properties Elastic moduli and stiffness Ultimate tensile strength Yield strength Ductility Modulus of rupture (flexural strength) Compressive strength Fatigue strength Impact strength Fracture toughness...
Abstract
The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered materials, including ferrous alloys, nonferrous alloys, ceramics, cermets and cemented carbides, engineering plastics, polymer-matrix composites, metal-matrix composites, ceramic-matrix and carbon-carbon composites, and reviews their general property characteristics and applications. It describes the synergy between the elements of the materials selection process and presents a general comparison of material properties. Finally, the article provides a short note on computer aided materials selection systems, which help in proper archiving of materials selection decisions for future reference.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006056
EISBN: 978-1-62708-175-7
.... Particle size and organic binder content influence powder properties such as bulk density and flowability. Tap density according to ASTM B527, “Standard Test Method for Determination of Tap Density of Metal Powders and Compounds,” ( Ref 1 ) quantifies the bulk density of a powder that has settled...
Abstract
Quality control of cemented carbides includes the evaluation of physical and chemical properties of constituent raw material powders, powder blends/formulations, green compacts, and fully dense finished product. This article provides a summary of the underlying principles and size ranges for the American Society for Testing and Materials (ASTM) standard methods of particle sizing and distribution. It presents the methods used to analyze the chemical composition of cemented carbide materials in a tabular form. The article also presents information on microstructural evaluation and physical and mechanical property evaluation of cemented carbides.
Book Chapter
Testing and Characterization of Ceramics
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
.... The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Book Chapter
Selecting Aluminum Alloys to Resist Failure by Fracture Mechanisms
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002406
EISBN: 978-1-62708-193-1
... fracture resistance fracture toughness high-strength wrought aluminum products microstructure precipitate shearing S-N fatigue strain control fatigue stress-corrosion cracking ratings stress-corrosion cracking resistance tensile properties thermal treatment Though virtually all design...
Abstract
This article provides an overview of fatigue and fracture resistance of aluminum alloys. It discusses the characteristics of aluminum alloy classes and the fracture mechanics of aluminum alloys. The article tabulates relative stress-corrosion cracking ratings for high-strength wrought aluminum products. It analyzes the selection of various alloys for stress-corrosion cracking resistance, including aluminum-lithium alloys, copper-free 7XXX alloys, and casting alloys. The article presents a list of typical tensile properties and fatigue limit of aluminum alloys. It also describes the effects of composition, microstructure, thermal treatments, and processing in fatigue crack growth of aluminum alloys.
Book Chapter
Factors in Materials Selection
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003089
EISBN: 978-1-62708-199-3
... Poisson's ratio Stress-strain curve Yield strength Tension Compression Shear Ultimate strength Tension Shear Bearing Fatigue properties Smooth Notched Corrosion fatigue Rolling contact Fretting Charpy transition temperature Fracture toughness ( K Ic...
Abstract
This article discusses the key factors that influence the selection of engineered materials for a particular application. Materials properties such as ultimate tensile strength, yield strength, hardness, and ductility, which chiefly define the performance or functional characteristics, are covered. This is followed by manufacturing process considerations such as material factors, shape factors, process factors, and the characteristics of fabricability, namely formability, workability, castability, machinability, and weldability.
Book Chapter
Introduction to Failure Analysis and Prevention
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
..., such as sliding wear of components made from 300 series stainless steels. Selection of a material that is incapable of providing adequate mechanical properties for the application (including strength, fatigue resistance, fracture toughness, corrosion resistance, elevated temperature resistance, etc.) is also...
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.
Book
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.9781627081825
EISBN: 978-1-62708-182-5
Book Chapter
Introduction to Failure Analysis and Prevention
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... on the processes involved in RCA and the charting methods that may be useful in RCA and ends with a description of various factors associated with failure prevention. corrosion distortion failure prevention fracture quality assurance root cause analysis wear MACHINES, COMPONENTS, and the materials...
Abstract
This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different levels, followed by a discussion on the role of failure analysis and the appreciation of quality assurance and user expectations. Systematic analysis of equipment failures reveals physical root causes that fall into one of four fundamental categories: design, manufacturing/installation, service, and material, which are discussed in the following sections along with examples. The tools available for failure analysis are then covered. Further, the article describes the categories of mode of failure: distortion or undesired deformation, fracture, corrosion, and wear. It provides information on the processes involved in RCA and the charting methods that may be useful in RCA and ends with a description of various factors associated with failure prevention.
Book Chapter
Glossary of Terms: Corrosion
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003718
EISBN: 978-1-62708-182-5
... Standards , Vol 03.02 , ASTM International • “Terminology Relating to Fatigue and Fracture Testing,” E 1823, Annual Book of ASTM Standards , Vol 03.01 , ASTM International • “Terminology Relating to Methods of Mechanical Testing,” E 6, Annual Book of ASTM Standards , Vol 03.01 , ASTM...
Abstract
This article is a comprehensive collection of terms related to corrosion fundamentals, testing, and protection.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
..., ductility, and toughness of metallic materials. These factors must also be considered in the evaluation and prevention of overload failures. Therefore, throughout this article, the term overload failure is intended to imply fracture due to stresses exceeding the capacity of the material, whether...
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Book Chapter
Mechanical Testing in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... (unnotched) tension specimen loaded slowly and under controlled conditions to fracture. Notch toughness represents the ability of a material to absorb energy and is determined under impact loading in the presence of a notch. Notch toughness is measured by using a variety of specimens, such as the Charpy V...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Book Chapter
Copper-Infiltrated Steels
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006076
EISBN: 978-1-62708-175-7
..., the powder is most commonly compacted to a density of 6.5 to 6.8 g/cm 3 (0.235 to 0.245 lb/in. 3 ). This range of density promotes the formation of an optimally porous spongy residue, which also minimizes adhesion. Fig. 3 Guidance chart to determine infiltrating slug weight required to achieve...
Abstract
The two most important classes of materials that are manufactured via infiltration methods are copper- and silver-infiltrated refractory metals and refractory carbides, and copper-infiltrated steels. This article focuses on copper-infiltrated steels and discusses the basic requirements for infiltration, which is a technique that is only applicable to material systems that meet certain requirements. It addresses these requirements and describes the conventional (partial) infiltration process of powder metallurgy (PM) steel. The materials used in the process, such as matrix and infiltrant, are discussed. The article also details several criteria used to evaluate the performance of an infiltration process. It concludes with information on alloy steels and fully infiltrated steels.
1