1-20 of 216 Search Results for

fracture toughness testing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... Abstract This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
.... The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009011
EISBN: 978-1-62708-185-6
... Abstract This article discusses the equipment design, procedures, experimental considerations, and interpretation of the torsion tests used to establish workability. It describes the application of torsion testing to obtain flow-stress data and to gage fracture-controlled workability and flow...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001831
EISBN: 978-1-62708-181-8
... alloy that was tested under rotating bending conditions. Compare with Fig. 17(b) . Fig. 19 Fatigue striations in a 2024-T3 aluminum alloy joined by tear ridges Fig. 20 Fatigue striations on adjoining walls on the fracture surface of a commercially pure titanium specimen. (O.E.M...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001832
EISBN: 978-1-62708-181-8
... preheated to about 95 °C (205 °F). The fracture is then immersed in the solution for about 30 min, rinsed in water then alcohol, and air dried. Figure 3(a) shows the condition of a laboratory-tested fracture toughness sample (AISI 1085 heat-treated steel) after it was intentionally corroded in a 5% salt...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.9781627081764
EISBN: 978-1-62708-176-4
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003025
EISBN: 978-1-62708-200-6
... se. However, they are widely believed to be more reliable than formal fracture toughness tests, simply because the deleterious effects of unfavorable flow geometries are more directly obvious in an impact test program than in fracture toughness tests, in which the sharp notch dominates the situation...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003243
EISBN: 978-1-62708-199-3
... HY steel compositions and programmed-cooling-rate thermal cycles for the base metal and weld wire. The vertical axis is a plot of a parameter derived from the specimen strength ratio in ASTM E 399, “Test Method for Plane-Strain Fracture Toughness of Metallic Materials”—i.e., 6 P max / B ( W − a...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006478
EISBN: 978-1-62708-190-0
... materials property characterization. Throughout their life cycle, composites are susceptible to the formation of many possible defects, primarily due to their multiple-step production process, nonhomogeneous nature, and brittle matrix. These defects include delaminations, matrix cracking, fiber fracture...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001241
EISBN: 978-1-62708-170-2
... contact between the tool and the work, or it may be due to the wear caused by the hard and abrasive chip after it is released from the work material. Toughness is the resistance to fracture. It is easier to propagate cracks or fracture through material of lower toughness. Hence, it is easier to machine...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003995
EISBN: 978-1-62708-185-6
... and reviews how improvements in the strength and toughness depend on the synergistic effect of microalloy additions and on carefully controlled thermomechanical conditions. It discusses TMP variables and the general distinctions between conventional hot rolling and common types of controlled-rolling...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... article discusses the common testing techniques and process variables for workability prediction. It illustrates the simple and most widely used fracture criterion proposed by Cockcroft and Latham and provides a workability analysis using the fracture limit line. The article describes various workability...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001834
EISBN: 978-1-62708-181-8
... illustrations. The article also describes microscopic and macroscopic features of the different fracture mechanisms with illustrations with emphasis on visual and light microscopy examination. The types of fractures considered include ductile fractures, tensile-test fractures, brittle fractures, fatigue...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003224
EISBN: 978-1-62708-199-3
... fracture toughness of the material. Fracture toughness, in the most general of definitions, is the ability of a material to withstand fracture in the presence of cracks. The American Society for Testing and Materials (ASTM) has many commonly accepted standards for fracture testing, and defines fracture...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
... Abstract The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested in the...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
... heat treatment on fracture toughness of steels. carbon steels classification of wear effect of alloying elements fatigue failure forms of embrittlement fracture toughness low-alloy steels notch toughness wear resistance WEAR of metals occurs by the plastic displacement of surface...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000614
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of maraging steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the tensile-test fracture, low-cycle fatigue fracture...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003108
EISBN: 978-1-62708-199-3
... approximate standard grades. Properties were obtained using test bars machined from 25 mm (1 in.) keel blocks. (a) 0.2% offset. (b) 0.0375% offset. (c) Calculated from tensile modulus and Poisson's ratio in tension Table 6 Fracture toughness of ductile iron Type of iron Condition...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000608
EISBN: 978-1-62708-181-8
... a toughness test in air; the rate of crack growth was in the range of rapid, unstable fracture. Dimples in an extremely wide variety of sizes and channels formed by linear coalescence of voids are evident. See Fig. 330 , 331 , 332 , 333 , 334 , and 335 for the fracture behavior of this...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009006
EISBN: 978-1-62708-185-6
... enough to allow design of sound workability test procedures or selection of pertinent technical data from published sources. First of all, the driving forces for fracture, stress, and strain have nothing directly to do with the inherent resistance of the metal to fracture (or its workability). There...