Skip Nav Destination
Close Modal
By
Michael Jenkins, Johnathan Salem
By
J.H. Miller, P.K. Liaw
By
David Arencón Osuna, Marcelo de Sousa Pais Antunes, Vera Cristina de Redondo Realinho, José Ignacio Velasco
By
Kevin M. Kit, Paul J. Phillips
By
Brian Macejko
By
S.W. Becker, G.F. Carpenter
Search Results for
fracture toughness test method
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 956
Search Results for fracture toughness test method
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Three test-method configurations for fracture-toughness testing of ceramics...
Available to PurchasePublished: 01 January 2000
Fig. 5 Three test-method configurations for fracture-toughness testing of ceramics included in ASTM C 1421. SCF, surface crack in flexure; SEPB, single-edge precracked beam; CNB, chevron notched beam
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003306
EISBN: 978-1-62708-176-4
... Abstract Fracture toughness is an empirical material property that is determined by one or more of a number of standard fracture toughness test methods. This article describes the fracture toughness test methods in a chronological outline, beginning with the methods that use the linear-elastic...
Abstract
Fracture toughness is an empirical material property that is determined by one or more of a number of standard fracture toughness test methods. This article describes the fracture toughness test methods in a chronological outline, beginning with the methods that use the linear-elastic parameter. After this, the methods that use the nonlinear parameters are discussed. The article reviews some of the work in progress to update the standard test methods, namely, common fracture toughness test method and transition fracture toughness test method. Finally, an overview of fracture toughness testing for ceramic and polymer materials is provided.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002380
EISBN: 978-1-62708-193-1
... Abstract This article describes the test methods of fracture toughness, namely, linear-elastic and nonlinear fracture toughness testing methods. Linear-elastic fracture toughness testing includes slow and rapid loading, crack initiation, and crack arrest method. Nonlinear testing comprises J IC...
Abstract
This article describes the test methods of fracture toughness, namely, linear-elastic and nonlinear fracture toughness testing methods. Linear-elastic fracture toughness testing includes slow and rapid loading, crack initiation, and crack arrest method. Nonlinear testing comprises J IC testing, J-R curve evaluation, and crack tip opening displacement (CTOD) method. Other methods used include the combined J standard method, the common fracture toughness test, transition fracture toughness testing, and the weldment fracture testing method.
Book Chapter
Fracture Resistance Testing of Brittle Solids
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003312
EISBN: 978-1-62708-176-4
... methods developed to characterize the fracture behavior of brittle solids with examples. These include the fracture toughness test method and R-curve test method at ambient and elevated temperatures. The article also includes information on the evaluation of fracture-toughness test results...
Abstract
Catastrophic failure best typifies the characteristic behavior of brittle solids in the presence of cracks or crack-like flaws under ambient conditions. This article provides a description of the concepts of fracture mechanics of brittle solids and focuses on the various testing methods developed to characterize the fracture behavior of brittle solids with examples. These include the fracture toughness test method and R-curve test method at ambient and elevated temperatures. The article also includes information on the evaluation of fracture-toughness test results and the behavior of R-curve.
Image
Two methods for fracture-toughness testing of ceramics contained in JIS R16...
Available to PurchasePublished: 01 January 2000
Fig. 6 Two methods for fracture-toughness testing of ceramics contained in JIS R1607-90. Dimensions in millimeters. Source: Ref 19
More
Image
Schematic illustration and nomenclature for double torsion (DT) fracture-to...
Available to PurchasePublished: 01 January 2000
Fig. 10 Schematic illustration and nomenclature for double torsion (DT) fracture-toughness test methods. Source: Ref 30
More
Book Chapter
Fracture Toughness and Fracture Mechanics
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003305
EISBN: 978-1-62708-176-4
... basic methods of EPFM include the crack-tip opening displacement (CTOD), the J -integral, and the R -curve methods. These tests are intended to provide specialized measurements of fracture properties as follows: CTOD: full range of fracture toughness; for slow loading rates J -integral...
Abstract
The fracture-mechanics technology has significantly improved the ability to design safe and reliable structures and identify and quantify the primary parameters that affect structural integrity of materials. This article provides a discussion on fracture toughness of notched materials by explaining the ductile-to-brittle fracture transition and by correlating KId, KIc, and Charpy V-notch impact energy absorptions. It highlights the effects of constraint, temperature, and loading rate on the fracture transition. The article discusses the applications of fracture mechanism in limiting of operating stresses. It describes the mechanisms, testing methods, and effecting parameters of two main categories of fracture mechanics: linear-elastic fracture mechanics and elastic-plastic fracture mechanics. The article concludes with a discussion on the three major progressive stages of fatigue: crack initiation, crack growth, and fracture on the final cycle.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002470
EISBN: 978-1-62708-194-8
..., such as the higher-strength materials used in aerospace applications, plane-strain fracture toughness testing may be appropriate at lower to moderate temperatures, but not for higher service temperatures. Methods such as J -integral, CTOD, and even CVN testing are available for higher-temperature testing...
Abstract
Fracture toughness is the ability of a material to withstand fracture in the presence of cracks. This article focuses on the use of fracture toughness as a parameter for engineering and design purposes. Both linear elastic and elastic-plastic fracture mechanics concepts are reviewed as they relate to fracture toughness and design process. The article explores the use of plane strain fracture toughness, crack-tip opening displacement, and the J-integral as the criteria for the design and safe operation of structures and mechanical components. It discusses the variables affecting fracture toughness, including yield strength, loading rate, temperature, and material thickness. A summary of different fatigue and fracture mechanics design philosophies and their relationship with fracture toughness is provided. The article concludes with information on the examples of fracture toughness in design.
Book Chapter
Mechanical Testing
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... Abstract This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress...
Abstract
This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them.
Book Chapter
Fracture Toughness of Ceramics and Ceramic Matrix Composites
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003311
EISBN: 978-1-62708-176-4
... specimen type. linear-elastic fracture mechanics elastic-plastic fracture mechanics fracture mechanics ceramics single edge notch bending testing compact tension testing double cantilever beam testing chevron notch methods double torsion method fracture toughness ceramic matrix composites...
Abstract
This article introduces the concepts of linear-elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM). It reviews the fracture mechanics of ceramics and ceramic matrix composites (CMCs). The article describes some fracture toughness measurement techniques used on ceramics and CMCs: single edge notch bending, compact tension, double cantilever beam testing, chevron notch methods, and double torsion. It presents descriptions organized by their specimen types, and includes the advantages and disadvantages, as well as the experimental control schemes employed for each specimen type.
Book Chapter
Fracture Mechanics Testing of Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006910
EISBN: 978-1-62708-395-9
... with the measurement of Δ a . Fracture Test Methods for Polymers Several methods have been developed specifically for determining the fracture toughness of polymeric materials. ASTM D5045 ( Ref 41 ) and ISO 13586 ( Ref 42 ) describe a method for determining the linear elastic fracture toughness ( K Ic...
Abstract
There are many different types of polymeric materials, ranging from glassy to semicrystalline polymers and even blends. Their mechanical properties range from pure elastic with very high strains to fracture (elastomers) to almost pure linear elastic (Hookian behavior) with low strains to fracture (glassy polymers). This article provides an overview of historical development of fracture behavior in polymers. It discusses the processes involved in three fracture test methods for polymers, namely linear elastic fracture mechanics, elastic-plastic fracture mechanics, and post-yield fracture mechanics.
Book Chapter
Fracture Resistance Testing of Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003310
EISBN: 978-1-62708-176-4
... Abstract This article discusses the J-integral-based single and multiple specimen techniques of the ASTM E 1737 test method for determining plane strain fracture toughness of polymeric materials. It describes the fracture toughness testing of thin sheets and films. The article concludes...
Abstract
This article discusses the J-integral-based single and multiple specimen techniques of the ASTM E 1737 test method for determining plane strain fracture toughness of polymeric materials. It describes the fracture toughness testing of thin sheets and films. The article concludes with information on the alternative methods for determining the fracture toughness of polymer materials.
Book Chapter
Impact Toughness Testing
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003308
EISBN: 978-1-62708-176-4
... Abstract Measurement and analysis of fracture behavior under high loading rates is carried out by different test methods. This article provides a discussion on the history and types of notch-toughness tests and focuses exclusively on notch-toughness tests with emphasis on the Charpy impact test...
Abstract
Measurement and analysis of fracture behavior under high loading rates is carried out by different test methods. This article provides a discussion on the history and types of notch-toughness tests and focuses exclusively on notch-toughness tests with emphasis on the Charpy impact test. It reviews the requirements of test specimens, test machine, testing procedure and machine verification, application, and determination of fracture appearance and lateral expansion according to ASTM A370, E 23, and A 593 specifications. In addition, the article includes information on the instrumentation, standards and requirements, and limitations of instrumented Charpy impact test, which is carried out in specimens with induced fatigue precrack. The article concludes with a review of the requirements of drop weight testing and the specimens used in other notch-toughness tests.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002384
EISBN: 978-1-62708-193-1
... values. The only influence of fracture toughness is the limiting size the fatigue crack could reach before the material fails in an unstable manner. Tougher materials are able to tolerate bigger fatigue cracks. Methods for Improving the Fatigue Life of Welded Joints Postweld fatigue life...
Abstract
This article discusses the various options for controlling fatigue and fractures in welded steel structures, with illustrations. It describes the factors that influence them the most. The article details some of the leading codes and standards for designing against failure mechanisms. Codes are presented for fitness-for-service and standards for fatigue and fracture control.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006457
EISBN: 978-1-62708-210-5
... tendency toward plastic deformation) for fracture-critical applications. A more complete evaluation of fracture toughness for ductile fracture based on J is the J - R curve. The test procedure was originally standardized as ASTM E 1152. The J Ic and J - R curve methods are very similar; hence...
Abstract
This article discusses the concepts underlying linear elastic fracture mechanics and elastic-plastic fracture mechanics as well as their importance in characterizing the fracture behavior of the high-strength aluminum alloys. It describes the three methods used for analyzing elastic-plastic fracture, namely R-curve concept, J-integral concept, and crack tip opening displacement method. The article considers the primary measures used to assess the toughness of aluminum alloy castings and wrought alloys: notch toughness, tear resistance, and plane-strain fracture toughness.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003325
EISBN: 978-1-62708-176-4
... of an impact. Methods that use sharp crack tips and thus can apply the loading more slowly are discussed in the next section on fracture toughness. Charpy The Charpy V-notch impact test is the most common measurement method for fracture toughness of welded joints. Specifications for the test are given...
Abstract
This article discusses the standard test methods that can be applied to many types of welds: tension, bending, impact, and toughness testing. It provides information on four qualification stages, namely, the weld material qualification, base material qualification, the weld procedure qualification, and the weld service assessment. The article describes two general types of measurements for residual stress in welds: locally destructive techniques and nondestructive techniques. Locally destructive techniques include hole drilling, chip machining, and block sectioning. Nondestructive techniques include X-ray diffraction, neutron diffraction, Barkhausen noise analysis, and ultrasonic propagation analysis. The article concludes with an overview of weldability testing.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003380
EISBN: 978-1-62708-195-5
...-8368(97)00013-9 2. O'Brien T.K. and Martin R.H. , Round Robin Testing for Mode I Interlaminar Fracture Toughness of Composite Materials , J. Compos. Technol. Res. , Vol 15 ( No. 4 ), 1993 , p 269 – 281 3. “Standard Test Method for Mode I Interlaminar Fracture Toughness...
Abstract
Delamination is one of the most commonly observed failure modes in composite materials. This article describes the three fundamental fracture failure modes of composite delamination, namely, opening, in-plane shearing, and tearing or scissoring shearing modes. It discusses the characterization and analysis of delamination. The article also reviews the prediction of delamination factors, such as flexbeam fatigue life, and skin/stiffener pull-off strength and life.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003443
EISBN: 978-1-62708-195-5
... Abstract This article provides the general mechanical testing guidelines for the characterization of lamina and laminate properties. Guidelines are provided for tensile property, compressive property, shear property, flexure property, fracture toughness, and fatigue property test methods...
Abstract
This article provides the general mechanical testing guidelines for the characterization of lamina and laminate properties. Guidelines are provided for tensile property, compressive property, shear property, flexure property, fracture toughness, and fatigue property test methods. The article also tabulates selected standards for lamina and laminate mechanical testing.
Book Chapter
Brittle Fracture Assessment and Failure Assessment Diagrams
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006809
EISBN: 978-1-62708-329-4
... manner and has a high susceptibility to fracture. At high temperatures, the material tends to behave in a ductile fashion. Charpy V-notch (CVN) impact testing is typically used as a relatively inexpensive method for estimating the transition from brittle to ductile behavior. In the plot in Fig. 6...
Abstract
A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture, provides a brief summary of historical failures that were found to be a result of brittle fracture, and describes key components that drive susceptibility to a brittle fracture failure, namely stress, material toughness, and cracklike defect. It also presents industry codes and standards that assess susceptibility to brittle fracture. Additionally, a series of case study examples are presented that demonstrate assessment procedures used to mitigate the risk of brittle fracture in process equipment.
Book Chapter
Fatigue and Fracture Properties of Cast Steels
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002398
EISBN: 978-1-62708-193-1
... these properties. These general relations are summarized below for toughness, fatigue, and component design factors such as section size and discontinuities. Strength and Toughness Several test methods are available for evaluating the toughness of steels or the resistance to sudden or brittle fracture...
Abstract
This article summarizes the general fatigue and fracture properties of cast steels, namely, toughness, fatigue, and component design factors such as section size and discontinuities. It describes the various factors that influence fatigue of cast steels. These factors include section size, defect size, stress modes, and waveform types. The article discusses various fracture mechanics in cast steels: cyclic stress-strain behavior and low- and high-cycle fatigue life behavior; plane-stress fracture toughness; plane-strain fracture toughness; constant-amplitude fatigue crack initiation and growth; and variable-amplitude fatigue crack initiation and growth.
1