Skip Nav Destination
Close Modal
Search Results for
fracture control
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1607
Search Results for fracture control
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002384
EISBN: 978-1-62708-193-1
... Abstract This article discusses the various options for controlling fatigue and fractures in welded steel structures, with illustrations. It describes the factors that influence them the most. The article details some of the leading codes and standards for designing against failure mechanisms...
Abstract
This article discusses the various options for controlling fatigue and fractures in welded steel structures, with illustrations. It describes the factors that influence them the most. The article details some of the leading codes and standards for designing against failure mechanisms. Codes are presented for fitness-for-service and standards for fatigue and fracture control.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002374
EISBN: 978-1-62708-193-1
... Abstract This article discusses the fracture and fatigue properties of powder metallurgy (P/M) materials depending on the microstructure. It describes the effects of porosity on the P/M processes relevant to fatigue and fracture resistance. The article details the factors determining fatigue...
Abstract
This article discusses the fracture and fatigue properties of powder metallurgy (P/M) materials depending on the microstructure. It describes the effects of porosity on the P/M processes relevant to fatigue and fracture resistance. The article details the factors determining fatigue and fracture resistance of P/M materials. It reviews the methods employed to improve fatigue and fracture resistance, including carbonitriding, surface strengthening and sealing treatments, shot-peening, case hardening, repressing and resintering, coining, sizing, and postsintering heat treatments. Safety factors for P/M materials are also detailed.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002381
EISBN: 978-1-62708-193-1
... Abstract Fracture control is a systematic process to prevent fracture during operation that depends on the criticality of the component, the economic consequences of the structures being out of service, and the damage that would be caused by a fracture failure. This article describes the key...
Abstract
Fracture control is a systematic process to prevent fracture during operation that depends on the criticality of the component, the economic consequences of the structures being out of service, and the damage that would be caused by a fracture failure. This article describes the key principles of fracture control and reviews the concepts of damage tolerance analysis. It further presents practical guidelines to obtain useful and reasonable answers from damage tolerance analysis. The article concludes with information on fracture mechanics and fatigue design.
Image
Published: 01 January 1996
Fig. 3 Key parameters for fracture control. (a) Residual strength in terms of stress. (b) Crack growth and time period when inspection can be performed
More
Image
Published: 01 June 2024
Fig. 68 Fracture surface on the steam-control valve stem. The arrows indicate the approximate fracture-origin region. Source: Ref 29
More
Image
Published: 01 June 2024
Fig. 71 Fracture surface of the steam-control valve stem after the end of the section was excised from the part. Locations 1 through 4 were selected for closer inspection. Source: Ref 29
More
Image
Published: 01 June 2024
Image
Published: 01 June 2024
Fig. 7 Stereomicrograph image of the fracture from a fatigue-tested (load control) additive-manufactured specimen. The fracture face exhibits multiple fatigue origins originating at surface discontinuities associated with the additive manufacturing process. This specimen was built up
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009005
EISBN: 978-1-62708-185-6
... workability tests and illustrates their application in practical forging situations. Workability tests for open-die forging of cast structures, hot and cold open-die forging of recrystallized structures, fracture-controlled defect formation, establishing effects of process variables and secondary tensile...
Abstract
Workability in forging depends on a variety of material, process-variable, and die-design features. A number of test techniques have been developed for gaging forgeability depending on alloy type, microstructure, die geometry, and process variables. This article summarizes some common workability tests and illustrates their application in practical forging situations. Workability tests for open-die forging of cast structures, hot and cold open-die forging of recrystallized structures, fracture-controlled defect formation, establishing effects of process variables and secondary tensile stresses on forgeability, and flow-localization-controlled failure are some common tests. The workability test used for closed-die forging is also summarized.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009011
EISBN: 978-1-62708-185-6
... Abstract This article discusses the equipment design, procedures, experimental considerations, and interpretation of the torsion tests used to establish workability. It describes the application of torsion testing to obtain flow-stress data and to gage fracture-controlled workability and flow...
Abstract
This article discusses the equipment design, procedures, experimental considerations, and interpretation of the torsion tests used to establish workability. It describes the application of torsion testing to obtain flow-stress data and to gage fracture-controlled workability and flow-localization-controlled failure. The article discusses the torsion test used to establish the processing parameters that are required to produce the desired microstructures.
Image
Published: 01 January 2002
Fig. 15 Cast type 410 stainless steel fuel-control lever that fractured at a cold shut. Dimensions in inches
More
Image
in Visual Examination and Photography in Failure Analysis
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 26 Computer-controlled digital microscopic examination of exemplar fractured crankshaft with light-emitting diode ring light illumination
More
Image
Published: 31 August 2017
Fig. 28 Fracture surface of samples broken using strain-controlled low-cycle fatigue (LCF) tests at 400 °C (752 °F) on ductile cast iron. Chemical composition: 3.0–3.6% C, 3.8–4.4% Si, <0.5% Mn, <0.04% P, <0.02% S, 0.5–0.7% Mo, bal Fe. Intergranular fracture could be attributed
More
Image
Published: 01 June 2024
Fig. 66 As-received steam-control valve stem. The fractured end of the part is at the right-center portion of the image. The arrow indicates the portion of the stem that was masked from nitriding. The yellow markings indicate the section selected for tensile testing and the 12 through 9
More
Image
Published: 01 January 1996
in . · s −1 ) for the dynamic tests and about 1.098 × 10 6 MPa m · s −1 (10 6 ksi in . · s −1 ) for the dynamic-instrumented tests. Source: Fracture Control and Prevention , Use of Precracked Charpy Specimens, American Society for Metals, 1974, p 255–282
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002386
EISBN: 978-1-62708-193-1
... side (2 a ). The depth of an edge or surface crack, a , corresponds to the crack size. Other more complicated geometries are discussed in the section “Fracture Control Applications” in this article. Fig. 2 Definition of quantities in constructing an operating stress map for a through...
Abstract
This article describes the basis of operating stress maps based on failure assessment diagrams, which are used to assess potential fracture in the whole range of conditions from brittle to fully plastic behavior. It discusses the factors influencing the process of constructing an operating stress map based on the principles used in constructing a residual strength diagram. These include plane strain fracture toughness, net section yield, and empiricism. The article details the fatigue crack growth behavior based on stress-corrosion cracking rates and corrosion fatigue factor. It summarizes the linear elastic fracture mechanics (LEFM) concepts for explaining the application of LEFM in damage tolerance analysis. The article exemplifies operating stress maps in a variety of applications.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002380
EISBN: 978-1-62708-193-1
... expensive and may give more stability, but allows only crosshead control. Because this is required in most of the fracture toughness tests, this type of machine is quite satisfactory for the actual fracture toughness testing but is not so good for precracking. Loading fixtures must be designed...
Abstract
This article describes the test methods of fracture toughness, namely, linear-elastic and nonlinear fracture toughness testing methods. Linear-elastic fracture toughness testing includes slow and rapid loading, crack initiation, and crack arrest method. Nonlinear testing comprises J IC testing, J-R curve evaluation, and crack tip opening displacement (CTOD) method. Other methods used include the combined J standard method, the common fracture toughness test, transition fracture toughness testing, and the weldment fracture testing method.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003515
EISBN: 978-1-62708-180-1
... summarized in Fig. 2 . The growth and/or fracture of a crack is assumed to be controlled by the stress intensity factor, K Ic that defines the singularity in stress at the tip of the crack and is a function of the applied loads and the crack size. If the stress intensity factor exceeds a material...
Abstract
This article provides information on life assessment strategies and conceptually illustrates the interplay of nondestructive evaluation (NDE) and fracture mechanics in the damage tolerant approach. It presents information on probability of detection (POD) and probability of false alarm (PFA). The article describes the damage tolerance approach to life management of cyclic-limited engine components and lists the commonly used nondestructive evaluation methods. It concludes with an illustration on the role of NDE, as quantified by POD, in fully probabilistic life management.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001037
EISBN: 978-1-62708-161-0
..., and steel specifications that satisfy these requirements have been developed. The need for steels with higher fracture toughness and better weldability, as well as lower cost, has prompted major advancements in structural steel technology. These advancements are highlighted by the development of controlled...
Abstract
Critical structural components must be fabricated from steels that exhibit adequate low-temperature fracture toughness because of the serious consequences of failure due to brittle fracture. This article reviews fracture resistance assessment procedures for welded joints and includes discussions on fatigue crack growth and fracture toughness. It presents the fracture toughness requirements specified by different design codes, summarizes the specifications for offshore structural steels provided by international standards organizations, and discusses the applications of these specifications. The article also focuses on advances made in steel technology and the impact of these advances on the fracture toughness of steel.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002385
EISBN: 978-1-62708-193-1
... investigation. cryogenic pressure vessel failure analysis fracture mechanics gas transmission pipeline large fan liquid propane gas cylinder subcritical fracture mechanics FRACTURE MECHANICS has developed into a useful tool in the design of crack-tolerant structures and in fracture control...
Abstract
This article illustrates the role that fracture mechanics can play in failure analysis. It describes the important failure criteria as relations between design and materials factors, which are used to correlate fracture mechanics analysis to the observations of a failure analysis. Descriptions include an indication of how the factors are typically evaluated. The article also provides information on subcritical fracture mechanics. Finally, a group of failure analysis examples explain how fracture mechanics parameters can be determined and how they may be fitted into an overall failure investigation.
1