Skip Nav Destination
Close Modal
Search Results for
four-slide machine
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 153 Search Results for
four-slide machine
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003983
EISBN: 978-1-62708-185-6
... combine machining operations with swaging operations. The difficulties of attaching terminals and fittings to cables by welding or soldering are often overcome by the use of swaging. Four types of swaged attachments are illustrated in Fig. 26 . The plain ball swaged in position ( Fig. 26a ) will...
Abstract
Rotary swaging is an incremental metalworking process for reducing the cross-sectional area or otherwise changing the shape of bars, tubes, or wires by repeated radial blows with two or more dies. This article discusses the applicability of swaging and metal flow during swaging. It describes the types of rotary swaging machines, auxiliary tools, and swaging dies used for rotary swaging and the procedure for determining the side clearance in swaging dies. The article presents an overview of automated swaging machines and tube swaging, with and without a mandrel. It analyzes the effect of reduction, feed rate, die taper angle, surface contaminants, lubrication, and material response on swaging operation. The article discusses the applications for which swaging is the best method for producing a given shape, and compares swaging with alternative processes. It concludes with a discussion on special applications of swagging.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001232
EISBN: 978-1-62708-170-2
... Cost per part Product performance These results are affected by four categories of factors. Following is a list of these factors and some of the variables that influence them: Machine tool factors Design: rigidity, precision, dynamic stability Features: controls, power/speed, slide...
Abstract
Abrasive finishing is a method where a large number of multipoint or random cutting edges are coupled with abrasive grains as a bond or matrix material for effective removal of material at smaller chip sizes. This article provides a broad overview of the various categories of abrasive products and materials, abrasive finishing processes, and the mechanisms of delivering the abrasives to the grinding or machining zone. Abrasive finishing processes, such as grinding, honing, superfinishing, microgrinding, polishing, buffing, and lapping, are discussed. The article presents a brief discussion on abrasive jet machining and ultrasonic machining. It concludes with a discussion on the four categories of factors that affect the abrasive finishing or machining: machine tool, work material, wheel selection, and operational.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005258
EISBN: 978-1-62708-187-0
... mold at elevated temperatures without deforming the casting. Spinning of the mold is realized by spinners. Horizontal machines of all sizes usually use four trunnion wheel spinners to support and spin the mold. A short horizontal mold can be cantilevered (attached at only one end) and spun with a...
Abstract
Horizontal centrifugal casting is used to cast parts having an axis of revolution. This article discusses the operations of various horizontal casting machines, such as flanged shaft machine, horizontal roller-type machine, and double-face plate machine. It describes the types of molds, such as expendable molds and permanent molds, used for centrifugal casting. The article also discusses the steps in casting process, namely, pouring, solidification, and babbitting. It provides information on the applications of the horizontal centrifugal casting.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003982
EISBN: 978-1-62708-185-6
..., radial-axial horizontal rolling machines, four-mandrel mechanical table mills, three-mandrel table mills, and automatic radial-axial multiple-mandrel ring mills. The article provides a discussion on the process control technology and ancillary operations of ring rolling. It describes the methods of...
Abstract
Ring rolling is a process for creating seamless ring shaped components using specialized equipment and forming processes. This article provides information on the applications of ring rolling. It discusses the types of machines used for ring rolling, namely, vertical rolling machines, radial-axial horizontal rolling machines, four-mandrel mechanical table mills, three-mandrel table mills, and automatic radial-axial multiple-mandrel ring mills. The article provides a discussion on the process control technology and ancillary operations of ring rolling. It describes the methods of producing ring blanks and the various types of blanking and rolling tools used in ring rolling process. The article concludes with a discussion on rolled ring tolerances and machining allowances.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004004
EISBN: 978-1-62708-185-6
... forming machine, with the punches located on the moving slide (lower left) and the stationary dies (middle) fixed to the bed. Figure 9 provides a closer view of the transfer mechanism, including specialized support fingers used to transfer very short parts (e.g., valve-spring retainers) or stepped parts...
Abstract
Cold heading is typically a high-speed process where a blank is progressively moved through a multi-station machine. This article discusses various cold heading process parameters, such as upset length ratio, upset diameter ratio, upset strain, and process sequence design. It describes the various components of a cold-heading machine and the tools used in the cold heading process. These include headers, transfer headers, bolt makers, nut formers, and parts formers. The article explains the operations required for preparing stock for cold heading, including heat treating, drawing to size, machining, descaling, cutting to length, and lubricating. It lists the advantages of the cold heading over machining. Materials selection criteria for dies and punches in cold heading are also described. The article provides examples that demonstrate tolerance capabilities and show dimensional variations obtained in production runs of specific cold-headed products. It concludes with a discussion on the applications of warm heading.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003973
EISBN: 978-1-62708-185-6
... achieve around three to four times higher pressing forces as compared with eccentric presses. Furthermore, the slide speed in the region 30 to 40° above the BDC is appreciably lower. Fig. 12 Knuckle-joint press with bottom drive By inserting an additional joint, the kinematic characteristics...
Abstract
Hammers and high-energy-rate forging machines are classified as energy-restricted machines as they deform the workpiece by the kinetic energy of the hammer ram. This article provides information on gravity-drop hammers, power-drop hammers, die forger hammers, counterblow hammers, and computer-controlled hammers. It describes the three basic designs of high-energy-rate forging (HERF) machines: the ram and inner frame, two-ram, and controlled energy flow. The article reviews forging mechanical presses, hydraulic presses, drive presses, screw presses, and multiple-ram presses.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003974
EISBN: 978-1-62708-185-6
...) clearances in the gibs, (b) parallelism of upper and lower beds, (c) flatness of upper and lower beds, (d) perpendicularity of slide motion with respect to lower bed, and (e) concentricity of tool holders. The machine characteristics influence the tolerances in formed parts. For instance, in backward...
Abstract
This article discusses the significant factors in the selection of forging equipment for a particular process. It describes the characteristics of forging hydraulic presses, mechanical presses, screw presses, and hammers. The article discusses the significant characteristics of these machines that comprise all machine design and performance data, which are pertinent to the economic use of the machines, including the characteristics for load and energy, time-related characteristics, and characteristics for accuracy.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003055
EISBN: 978-1-62708-200-6
... attention to factors that can be grouped into four categories: Machine tool factors Wheel selection factors Work material factors Operational factors Each of these categories is discussed in detail below. This integrated approach to the grinding process is known as the systems approach...
Abstract
Ceramics usually require some form of machining prior to use to meet dimensional and surface quality standards. This article focuses on abrasive machining, particularly grinding, and addresses common methods and critical process factors. It covers cylindrical, centerless, and disk grinding and provides information on tooling, wheel selection, work material, and operational factors. It also discusses precision slicing and slotting, lapping, honing, and polishing as well as abrasive waterjet, electrical discharge, laser, and ultrasonic machining.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005355
EISBN: 978-1-62708-187-0
.... This cell consists of a robot and four specially designed grinding wheels. The wheels are hydraulically driven from a central unit. Wheel wear compensation is automatic such that the working point of the wheel is at the exact same location from cycle to cycle. Before entering the cell, castings are...
Abstract
After solidification and cooling, further processing and finishing of the castings are required. This article describes the general operations of shakeout, grinding, cleaning, and inspection of castings, with particular emphasis on automation technology. It illustrates the vertical core knockout machine and the A-frame core knockout machine and lists the advantages and disadvantages of the knockout machines. The article describes the general factors in automated or manual gate removal process. It concludes with discussion on the various types of inspection, such as liquid penetrant inspection, pressure testing, radiographic inspection, magnetic particle inspection, and ultrasonic inspection.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003980
EISBN: 978-1-62708-185-6
... movement of the slides under operator control. Fig. 2 Principal components of a typical machine for hot upset forging with a vertical four-station die Upset forging machines use three die elements to perform their forging function. Two gripper dies are used (one stationary and one moved by the...
Abstract
This article discusses the operation of upset forging machines and selection of the machine size. It describes several types of upsetter heading tools and their materials. The article reviews the cold shearing and hot shearing methods for preparing blanks for hot upset forging. It deals with various upsetting processes: offset upsetting, double-end upsetting, upsetting with sliding dies, upsetting pipe and tubing, and electric upsetting. The article also provides information on hot forging and cold forging.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001230
EISBN: 978-1-62708-170-2
... Abstract This article focuses on the various technology drivers for finishing methods, namely, tolerance, consistency, surface quality, and productivity. Every finishing method may be viewed as a manufacturing system consisting of four input categories: machine tool, processing tool, work...
Abstract
This article focuses on the various technology drivers for finishing methods, namely, tolerance, consistency, surface quality, and productivity. Every finishing method may be viewed as a manufacturing system consisting of four input categories: machine tool, processing tool, work material, and operational factors. The article provides a classification of finishing as a surface generation process and addresses the characteristics of the generated surfaces and the methods used to measure them. It describes the thermomechanical interactions occurring between the processing tool and the work material in the presence of machine tool and operational factors.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003183
EISBN: 978-1-62708-199-3
... mechanical presses that are used for forming sheet. Forging presses are built stronger than presses for forming sheet metal. Forging presses deliver their maximum force within 3.2 mm ( 1 8 in.) of the end of the stroke because maximum pressure is required to form the flash. In addition, the slide...
Abstract
Forging machines use a wide variety of hammers, presses, and dies to produce products with the desired shape, size, and geometry. This article discusses the major types of hammers (gravity-drop, power-drop, high speed, and open-die forging), and presses (mechanical, hydraulic, screw-type, and multiple-ram). It further discusses the technologies used in the design of dies, terminology, and materials selection for dies for the most common hot-forging processes, particularly those using vertical presses, hammers, and horizontal forging machines. A brief section is included on computer-aided design in the forging industry. Additionally, the article reviews specific characteristics, process limitations, advantages, and disadvantages of the most common forging processes, namely hot upset forging, roll forging, radial forging, rotary forging, isothermal and hot-die forging, precision forging, and cold forging.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003114
EISBN: 978-1-62708-199-3
... tool in service depends on proper design of the tool, the accuracy with which the tool is made, selection of the property tool steel, and application of the proper heat treatment. A tool can perform successfully in service only when all four of these requirements have been met...
Abstract
This article discusses the characteristics, composition limits, and classification of wrought tool steels, namely high-speed steels, hot-work steels, cold-work steels, shock-resisting steels, low-alloy special-purpose steels, mold steels, water-hardening steels, powder metallurgy tool steels, and precision-cast tool steels. It describes the effects of surface treatments on the basic properties of tool steels, including hardness, resistance to wear, deformation, and toughness. The article provides information on fabrication characteristics of tool steels, including machinability, grindability, weldability, and hardenability, and presents a short note on machining allowances.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003177
EISBN: 978-1-62708-199-3
... nonferrous metals. The article reviews the various types of forming processes such as blanking, piercing, fine-edge blanking, press bending, press forming, forming by multiple-slide machines, deep drawing, stretch forming, spinning, rubber-pad forming, three-roll forming, contour roll forming, drop hammer...
Abstract
This article describes the presses that are mechanically or hydraulically powered and used for producing sheet, strip, and plate from sheet metal. It also presents the JIC standards for presses, compares the presses based on power source, details the selection criteria and provides information on the various drive systems and the auxiliary equipment. It describes the selection of die materials and lubricants for sheet metal forming and provides information on the lubrication mechanisms and selection with a list of lubricant types for forming of specific sheet materials of ferrous or nonferrous metals. The article reviews the various types of forming processes such as blanking, piercing, fine-edge blanking, press bending, press forming, forming by multiple-slide machines, deep drawing, stretch forming, spinning, rubber-pad forming, three-roll forming, contour roll forming, drop hammer forming, explosive forming, electromagnetic forming, and superplastic forming.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005318
EISBN: 978-1-62708-187-0
... requiring no or minimal secondary machining are possible. The die has four functions in the die casting process ( Ref 2 ): Provide means for molten metal to enter the cavity and allow gas to escape Hold the metal in the desired shape Provide uniform heat removal for solidification Provide a...
Abstract
This article examines how design and materials selection address diverse requirements, such as cost, speed, and quality requirements of the process paired with the functional requirements of conventional die casting tooling, specifically tooling for high-volume processes. It discusses considerations, including properties of the material being cast, capacity and operating parameters of the casting machines being used, and economics of post processing that are considered along with the functional requirements.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005268
EISBN: 978-1-62708-187-0
... Casting” and “Die Casting Tooling” in this Volume. The functions of the clamp end of the machine include opening and closing the die, developing clamping force, and providing power for sliding cores and for ejecting the casting from the die cavity. The machine must open and close the die on a...
Abstract
The cold chamber die casting process is used with higher-melting-point alloys such as aluminum and magnesium. This article discusses the components design of the cold chamber high-pressure die casting machine. It reviews the process parameters of the cold chamber die casting. The parameters include shot profile, intensification phase, and component size.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003984
EISBN: 978-1-62708-185-6
... with the input and output bar sizes that can be produced. Fig. 2 Four-hammer radial forging machine with mechanical drive. (a) Cross section through forging box. (b) Longitudinal section through forging box. 1, eccentric shaft; 2, sliding block; 3, connecting rod; 4, adjustment housing; 5...
Abstract
Radial forging is a process performed with four dies arranged in one plane that can act on a piece simultaneously. This article explains the types of radial forgings and describes the advantages and disadvantages of radial forging over open-die cogging/forging. The article discusses the parameters involved in product shape control. It also provides examples that illustrate the versatility and capabilities of the radial forge machine.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003178
EISBN: 978-1-62708-199-3
... individual pieces are fed into hand benders, kick presses, power presses equipped with appropriate dies, or coiling devices. For large quantities, the wire is straightened directly from the coil and is fed continuously into power presses, automatic forming or spring-coiling machines, multiple-slide machines...
Abstract
This article discusses the mechanics, surface preparation and principles of metal forming operations such as drawing, bending (draw bending, compression bending, roll bending, and stretch bending), spinning, and straightening of bars, tubes, wires, rods and structural shapes. The article also discusses the machines and tools, including dies and mandrels, and lubricants used for these metal forming operations.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004012
EISBN: 978-1-62708-185-6
... four rotating plain external dies. The workpiece and mandrel may be clamped in a stationary position with the dies mounted in a rotating die head, or the dies may be stationary while the work and mandrel rotate. It is necessary to unscrew the part from the mandrel after threading has been completed...
Abstract
Thread rolling is a cold-forming process for producing threads or other helical or annular forms by rolling the impression of hardened steel dies into the surface of a cylindrical or conical blank. Methods that use cylindrical dies are classified as radial infeed, tangential feed, through feed, planetary, and internal. This article focuses on the capabilities, limitations, and machines used for these methods. It describes the three characteristics, such as rollability, flaking, and seaming, used in evaluating and selecting metals for thread rolling. The article explores the factors affecting die life and explains the effect of thread form on processing. It provides information on various fluids used in thread rolling to cool the dies and the work and to improve the finish on the rolled products. The article provides a comparison between thread rolling and cutting, as well as between thread rolling and grinding.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003214
EISBN: 978-1-62708-199-3
... silver-plate on steel. Finishing as a surface generation process is broadly classified into four groups: finish machining, abrasive machining, nonabrasive finishing, and mass finishing. Honing is a low-velocity abrading process that uses bonded abrasive sticks to remove stock...
Abstract
Finishing refers to a wide variety of processes that generally involve material removal in one form or another to generate surfaces with specific geometries, tolerances, and functional or decorative characteristics. This article discusses four major finishing methods, namely, abrasive machining, electropolishing, mass finishing, and shot peening. In each case, it describes subtypes, process variations, and the associated equipment.