Skip Nav Destination
Close Modal
Search Results for
four-slide machine
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 513 Search Results for
four-slide machine
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2006
Fig. 2 Forming operations in a four-slide machine. (a) Power-press tools pierce two holes into strip material at first station. (b) Tools at next press station notch strip on both edges. (c) Notched-and-pierced strip is fed in from press area. As strip motion stops, stock clamp descends so
More
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005180
EISBN: 978-1-62708-186-3
... Abstract The multiple-slide machine, sometimes called a four-way, four-slide, or multislide machine, is a somewhat specialized item of stamping equipment, although it is very versatile within a limited area of stamping applications. This article discusses the construction and advantages...
Abstract
The multiple-slide machine, sometimes called a four-way, four-slide, or multislide machine, is a somewhat specialized item of stamping equipment, although it is very versatile within a limited area of stamping applications. This article discusses the construction and advantages of multiple-slide machines. It presents comparisons of four-slide operations with press operations based on production speed, tooling cost, tool adjustments, and operating cost. The article reviews some factors to be considered while selecting multiple-slide machines. It summarizes the strip materials commonly used in four-slide production. The article examines the design factors of four-slide parts, including tolerances and finishes. It provides the design recommendations for optimal part quality at maximum production speed. The article also discusses various four-slide cutoff methods.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005267
EISBN: 978-1-62708-187-0
.... Die opens and cores, if any, retracts. Casting stays in ejector die until ejector pins push casting out of ejector die. As plunger uncovers filling hole, molten metal flows through inlet to refill gooseneck. Casting Machines In recent years, so-called four-slide machines have become...
Abstract
This article describes the melting process of casting metals used in hot chamber die casting. It discusses the design and capabilities of injection components, such as gooseneck, plunger, and cylinder. The article reviews the distinctions between hot and cold chamber processes. An example of a typical runner, gate and overflow configuration for faucet fixture casting is shown. Temperature control for die casting is also discussed. The article explains some ejection and post-processing techniques used for the hot chamber die casting: robotics, recycling, and fluxing.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005138
EISBN: 978-1-62708-186-3
... straightener, feed mechanism, and stock clamp and has a bed with four or more forming slides, a center post, and a stripper. Traditional machines known as four-slide machines in fact have four separate forming slides. New modern multislide machines may have as many as eleven independent forming slides. Some...
Abstract
This article describes the operation procedures of wire rolling in a Turks Head machine. It discusses spring coiling, as well as the manual and power bending used in the wire forming process. The article contains a table that lists examples of several wire-forming production problems and solutions. Lubricants for wire forming such as inorganic fillers, soluble oils, and boundary lubricants are reviewed. The article also analyzes the applications of lubricants in wire forming.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005165
EISBN: 978-1-62708-186-3
..., lettering, forming to shape, and ejecting can be done in one cycle of a multiple-slide machine. Forming is generally limited to bending operations, but the four slides and center post permit the fabrication of very complex parts, as described in more detail in the article “Multiple-Slide Machines...
Abstract
Multiple-slide forming is a process in which the workpiece is progressively formed in a combination of units that can be used in various ways for the automated fabrication of a large variety of simple and intricately shaped parts from coil stock or wire. This article discusses the components of multiple-slide rotary forming machines involved in the blanking and forming of strip stock. It describes a complicated application of the two-level forming, with an example.
Image
Published: 01 January 1989
). Bottom row: double-column machines with cross beam and two milling heads (d); cross beam, cross slide, and two milling spindle heads (e); cross beam, cross slide, and four milling spindle heads (f)
More
Image
Published: 01 January 1989
Fig. 18 End views of the cross slides, end slide, and spindle arrangements for four-spindle (a), six-spindle (b), and eight-spindle (c) machines
More
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002147
EISBN: 978-1-62708-188-7
... by the ways. All axial operations are performed by tools mounted in the turret. Tools mounted on the four cross slides can perform, consecutively or simultaneously, operations such as facing, form turning, grooving, or knurling. Fig. 11 Fundamentals of one type of single-spindle automatic bar machine...
Abstract
This article provides information on the operating principle, tool material and design changes, and safety and protection of various multifunction machines as well as the cutting fluids used. These include single-spindle automatic lathes, manual turret lathes, single-spindle automatic bar and chucking machines, Swiss-type automatic bar machines, multiple-spindle automatic bar and chucking machines, and multiple-spindle vertical chucking machines. The article provides examples that illustrate typical variations in dimensions obtained with a multiple-spindle machine. It also describes the machinability and provides information on the physical condition of the work metal. The article discusses the various factors to be considered in the selection of an appropriate machine. It presents examples that describe the techniques and equipment selected for specific production applications. In addition, the article discusses the types, applications, advantages, and disadvantages of machining centers and transfer machines. Finally, it provides the goals, objectives, and production techniques of flexible manufacturing systems.
Image
Published: 01 January 2006
Fig. 4 Four arrangements of cutoff blades and dies for multiple-slide forming machines. See text for details.
More
Image
Published: 01 December 1998
Fig. 26 Cross section of four-hammer radial forging machine with mechanical drive. (a) Eccentric shaft. (b) Sliding block. (c) Connecting rod. (d) Adjustment housing. (e) Adjusting screw. (f) Hydraulic overload protection. (g) Hammer adjustment drive shafts
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003973
EISBN: 978-1-62708-185-6
..., the load-stroke and velocity-stroke behavior of the slide can be established, at the design stage, by adjusting the length of one of the four links or by varying the connection point of the slider link with the drag link. Thus, with this press it is possible to maintain the maximum load, as specified...
Abstract
Hammers and high-energy-rate forging machines are classified as energy-restricted machines as they deform the workpiece by the kinetic energy of the hammer ram. This article provides information on gravity-drop hammers, power-drop hammers, die forger hammers, counterblow hammers, and computer-controlled hammers. It describes the three basic designs of high-energy-rate forging (HERF) machines: the ram and inner frame, two-ram, and controlled energy flow. The article reviews forging mechanical presses, hydraulic presses, drive presses, screw presses, and multiple-ram presses.
Image
Published: 01 January 2005
Fig. 2 Four-hammer radial forging machine with mechanical drive. (a) Cross section through forging box. (b) Longitudinal section through forging box. 1, eccentric shaft; 2, sliding block; 3, connecting rod; 4, adjustment housing; 5, adjusting screw; 6, hydraulic overload protection; 7, hammer
More
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005115
EISBN: 978-1-62708-186-3
... Abstract This article commences with a description of the four basic types of feeding arrangements, namely, hand feeding, hitch feeds, roll feeds, and slide feeds. Air feeds offer the utility of use with a wide variety of presses and machines. The article discusses the mounting and actuation...
Abstract
This article commences with a description of the four basic types of feeding arrangements, namely, hand feeding, hitch feeds, roll feeds, and slide feeds. Air feeds offer the utility of use with a wide variety of presses and machines. The article discusses the mounting and actuation of the air feeds, which allows automatic feeding in machinery that is not normally adaptable to the use of standard feeds. Automatic press feeds are used to improve production and provide uniform, accurate progressions. The article describes the accuracy control techniques for the automatic press feeds and concludes with information on air circuits for the air feeds.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003326
EISBN: 978-1-62708-176-4
... ). Fig. 15 Schematic of sliding bearing test machine. Source: Ref 27 References 28 and 29 came from the same time period as the 1946 symposium and featured hydrodynamic journal bearings tested under cyclical loading or high-speed operation. The aim of these studies was to provide...
Abstract
This article provides an overview of two major classes of bearings: rolling bearings and sliding, or plain, bearings. It reviews the experimental data resulted from testing of rolling and sliding bearing materials with illustration. The article presents a table that summarizes rolling contact fatigue test methods that ASTM published in STP 771. It also describes the role of lubrication in the bearings.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003242
EISBN: 978-1-62708-199-3
... of the wear scar. Four replicate block specimens were tested, each sliding on a new ring. On closer examination of the measurement methods, a number of assumptions and potential sources of error are found. In using weight measurement, it is assumed that the specimens were completely cleaned of wear debris...
Abstract
Wear is mechanically-induced surface damage that results in the progressive removal of material. Because different types of wear occur in machinery, many different types of wear tests have been developed to evaluate its effects on materials and surface treatments. This article provides an explanation on mechanisms, forms (sliding, impact, and rolling) and the causes of wear. It describes the wear measuring methods, including the mass loss method, wear width method, and scar depth method. The units used to report wear vary with type of wear and with the purpose for which the data are to be used. Listing the considerations of tribosystem analysis, the article provides information on selection of ASTM wear test methods grouped by wear type. The article concludes by tabulating the testing geometries and parameters that are commonly controlled and reported when conducting wear tests.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005112
EISBN: 978-1-62708-186-3
... per minute, controls the slide speed. Usually press speeds with this type of drive are high, ranging from 60 to 1000 strokes per minute. The main shaft can have a crankshaft, as shown in Fig. 14(a) , or an eccentric. Fig. 14 Four types of drive and clutch arrangements for mechanical presses...
Abstract
This article describes the various types of press construction and the factors that influence the selection of mechanically or hydraulically powered machines for producing parts from sheet metal. Presses are broadly classified, according to the type of frame used in their construction, into two main groups: gap-frame presses and straight-side presses. The article describes the various components of mechanical presses and hydraulic presses. It discusses important factors, such as the size, force, energy, and speed requirements, that influence the selection of a press. The article describes the roles of automatic handling equipment that can be categorized as feeding equipment, unloading equipment, and transfer equipment. It concludes with information on the common types of high-production presses, such as dieing machines, multiple-slide machines, transfer presses, fine blanking presses, and flexible-die forming presses.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003974
EISBN: 978-1-62708-185-6
... no-load conditions n 0 , the machine energy E M , and the deformation energy E p required by the process influence the slide velocity under load V p and the number of strokes under load n p ; n p determines the maximum number of parts formed per minute (the production rate) if the feeding...
Abstract
This article discusses the significant factors in the selection of forging equipment for a particular process. It describes the characteristics of forging hydraulic presses, mechanical presses, screw presses, and hammers. The article discusses the significant characteristics of these machines that comprise all machine design and performance data, which are pertinent to the economic use of the machines, including the characteristics for load and energy, time-related characteristics, and characteristics for accuracy.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
.... Modified Four-Ball Machine A model contact consisting of three lower balls driven by a fourth contacting upper ball simulates conditions within a standard deep-groove ball bearing. The upper ball models the bearing race, while the cup simulates the bearing outer race, and the three planetary balls...
Abstract
Rolling-contact fatigue (RCF) is a surface damage process due to the repeated application of stresses when the surfaces of two bodies roll on each other. This article briefly describes the various surface cracks caused by manufacturing processing faults or blunt impact loads on ceramic balls surfaces. It discusses the propagation of fatigue cracks involved in rolling contacts. The characteristics of various types of RCF test machines are summarized. The article concludes with a discussion on the various failure modes of silicon nitride in rolling contact. These include the spalling fatigue failure, the delamination failure, and the rolling-contact wear.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003980
EISBN: 978-1-62708-185-6
..., placing movement of the slides under operator control. Fig. 2 Principal components of a typical machine for hot upset forging with a vertical four-station die Upset forging machines use three die elements to perform their forging function. Two gripper dies are used (one stationary and one...
Abstract
This article discusses the operation of upset forging machines and selection of the machine size. It describes several types of upsetter heading tools and their materials. The article reviews the cold shearing and hot shearing methods for preparing blanks for hot upset forging. It deals with various upsetting processes: offset upsetting, double-end upsetting, upsetting with sliding dies, upsetting pipe and tubing, and electric upsetting. The article also provides information on hot forging and cold forging.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006806
EISBN: 978-1-62708-329-4
... and sliding bearings. This article discusses failures of sliding bearings. A bearing failure lowers efficiency, increases energy loss, degrades performance, and increases environmental pollution. Failure costs are generally high, because it includes machine downtime costs, bearing cost, and disassembly...
Abstract
A mechanical part, which supports the moving part, is termed a mechanical bearing and can be classified into rolling (ball or roller) bearings and sliding bearings. This article discusses the failures of sliding bearings. It first describes the geometry of sliding bearings, next provides an overview of bearing materials, and then presents the various lubrication mechanisms: hydrostatic, hydrodynamic, boundary lubrication, elastohydrodynamic, and squeeze-film lubrication. The article describes the effect of debris and contaminant particles in bearings. The steps involved in failure analysis of sliding bearings are also covered. Finally, the article discusses wear-damage mechanisms from the standpoint of bearing design.
1