Skip Nav Destination
Close Modal
Search Results for
formability
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 458 Search Results for
formability
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005182
EISBN: 978-1-62708-186-3
... Abstract This article describes strain analysis techniques for troubleshooting formability and process discrepancies throughout a tooling development and production stamping cycle. The techniques include strain calculations of a flat blank, forming limit curve, and forming limit diagram...
Abstract
This article describes strain analysis techniques for troubleshooting formability and process discrepancies throughout a tooling development and production stamping cycle. The techniques include strain calculations of a flat blank, forming limit curve, and forming limit diagram. The article describes the types of strain analysis, namely, thinning strain analysis and circle grid strain analysis. It also provides information on the applications of the thinning strain analysis.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005149
EISBN: 978-1-62708-186-3
... Abstract Sheet metal forming operations are so diverse in type, extent, and rate that no single test provides an accurate indication of the formability of a material in all situations. This article presents an overview of types of forming, formability problems, and principal methods...
Abstract
Sheet metal forming operations are so diverse in type, extent, and rate that no single test provides an accurate indication of the formability of a material in all situations. This article presents an overview of types of forming, formability problems, and principal methods of measuring deformation. It reviews the effect of materials properties and temperature on formability. The article provides a detailed discussion on the two major categories of formability tests such as the intrinsic test, including uniaxial tension testing, plane-strain tension testing, biaxial stretch testing, and simulative tests such as bending tests, stretching tests, the Ohio State University test, the drawing test, and stretch-drawing tests. It extends the correlation between simulative tests and materials properties using forming limit diagrams and circle grid analysis, and discusses the improvements to the forming limit diagram technology.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001032
EISBN: 978-1-62708-161-0
... Abstract This article discusses the bulk formability or workability of steels. It describes their formability characteristics and presents procedures for various formability tests used for carbon and alloy steels. Tests for bulk formability can be divided into two main categories: primary tests...
Abstract
This article discusses the bulk formability or workability of steels. It describes their formability characteristics and presents procedures for various formability tests used for carbon and alloy steels. Tests for bulk formability can be divided into two main categories: primary tests and specialized tests. The article compares the processing of microalloyed plate and bar products. The article focuses on the use of torsion testing to evaluate the forgeability of carbon and alloy steels and presents information on measuring flow stress. The article discusses the metallurgy and thermomechanical processing of high-strength low-alloy (microalloyed) steels and the various parts of the rolling operation. The article summarizes some of the common tests for determining formability in open-die and closed-die forgings.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001031
EISBN: 978-1-62708-161-0
... Abstract Steel sheet is widely used for industrial and consumer products, partly because it is relatively strong, easily joined, and readily available at moderate cost. This article discusses the mechanical properties and formability of steel sheet, the use of circle grid analysis to identify...
Abstract
Steel sheet is widely used for industrial and consumer products, partly because it is relatively strong, easily joined, and readily available at moderate cost. This article discusses the mechanical properties and formability of steel sheet, the use of circle grid analysis to identify the properties of complicated shapes, and various simulative forming tests. The mechanical properties of steel sheet that influence its forming characteristics, either directly or indirectly, can be measured by uniaxial tension testing. The article covers the effects of steel composition, steelmaking practices, and metallic coatings, as well as the correlation between microstructure and formability. A guide to the selection of steel sheet is also included. The formability of steel sheet is related to various microstructural features of the sheet. The article describes some of the forming characteristics of the more commonly used formable grades. It also lists the typical mechanical properties for common grades of hot-rolled and cold-rolled steel sheets.
Image
in Aluminum Mill and Engineered Wrought Products
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 14 Effect of magnesium and manganese on the formability of aluminum alloys in the annealed and H34 tempers; 1.6 mm (0.064 in.) thick sheet
More
Image
in Bulk Formability of Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 1 Comparison of the bulk formability of carbon and low-alloy steels with the formability of resulfurized grades. T M is the absolute melting temperature of the alloys. Source: Ref 1
More
Image
in Beryllium-Copper and Other Beryllium-Containing Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 8 Strength and transverse bend formability relationships in selected connector alloys (90° plane-strain bends)
More
Image
Published: 01 January 2006
Fig. 8 Yield strength and formability (in terms of tensile ductility) of conventional high-strength steels (HSS) and advanced high-strength steels (AHSS). Types of steels: BH, bake-hardening; CMn, carbon-manganese; CP, complex phase; DP, dual-phase; HSLA, high-strength, low-alloy steel; IF-HS
More
Image
Published: 01 January 2006
Fig. 18 Dimensional relations defining six areas of formability of square or rectangular drawn shells of 1010 steel. See text for details.
More
Image
Published: 01 January 2006
Fig. 13 Bend formability of copper alloys as a function of rolling direction. Bends with the axis transverse to the rolling direction are termed good-way bends; bends with the axis parallel to the rolling direction are bad-way bends. See also Table 5 . Source: Ref 3
More
Image
Published: 01 January 2006
Fig. 18 Change in formability as a function of the coining of alloy C17200 in (a) longitudinal and (b) transverse directions. The effect of coining is simulated by cold reduction. Original strip thickness in both cases was 0.41 mm (0.016 in.). Bend formability is measured as the ratio of bend
More
Image
Published: 01 January 2006
Fig. 21 Formability of MgAl3Zn1 (AZ31) with dependence on temperature. RT, room temperature
More
Image
Published: 01 January 2006
Fig. 4 Effect of temperature on the formability of Mo-0.5Ti sheet as indicated by the ratio of bend radius to sheet thickness
More
Image
Published: 01 January 2006
Fig. 4 Effect of forming temperature on the drop hammer formability of two titanium alloys
More
Image
Published: 01 January 2006
Fig. 5 Formability limits of beaded titanium alloy panels at room temperature and at elevated temperature
More
Image
Published: 01 December 2004
Fig. 30 Same as Fig. 29 , except annealed to increase formability, which changed the microstructure to white crystals of eutectic antimony-tin in a dark matrix of lead-rich solid solution. Nital. Original magnification 500×
More
Image
Published: 01 December 1998
Fig. 5 Effect of temperature on the formability of Mo-0.5Ti sheet, as indicated by ratio of bend radius to sheet thickness
More
Image
Published: 30 November 2018
Fig. 29 Effect of magnesium and manganese on the formability of aluminum alloys in the annealed and H34 tempers; 1.6 mm (0.064 in.) thick sheet
More
1