Skip Nav Destination
Close Modal
By
Wesley Wang, S. Liu
By
D.L. Olson, S. Liu, R.H. Frost, G.R. Edwards, D.A. Fleming
By
Robert Goldstein
By
Daniel E. Groteke, David V. Neff
Search Results for
fluxes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1121
Search Results for fluxes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005300
EISBN: 978-1-62708-187-0
... Abstract Aluminum fluxing is a step in obtaining clean molten metal by preventing excessive oxide formation, removing nonmetallic inclusions from the melt, and preventing and/or removing oxide buildup on furnace walls. This article discusses the solid fluxes and gas fluxes used in foundries...
Abstract
Aluminum fluxing is a step in obtaining clean molten metal by preventing excessive oxide formation, removing nonmetallic inclusions from the melt, and preventing and/or removing oxide buildup on furnace walls. This article discusses the solid fluxes and gas fluxes used in foundries. It reviews the classification of solid fluxes depending on their use and function at the foundry operation. These include cover fluxes, drossing fluxes, cleaning fluxes, and furnace wall cleaner fluxes. The article also examines the operational practices and applications of the flux injection in the foundries. It describes the applications of the aluminum fluxing such as crucible furnaces, transfer ladles, reverberatory furnaces, and holding/casting furnaces.
Book Chapter
Nature and Behavior of Fluxes Used for Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005571
EISBN: 978-1-62708-174-0
... Abstract Fluxes are added to the welding environment to improve arc stability, provide a slag, add alloying elements, and refine the weld pool. This article discusses the effect of oxygen, which is an important chemical reagent to control the weld metal composition, microstructure...
Abstract
Fluxes are added to the welding environment to improve arc stability, provide a slag, add alloying elements, and refine the weld pool. This article discusses the effect of oxygen, which is an important chemical reagent to control the weld metal composition, microstructure, and properties. It provides information on the inclusions that form as a result of reactions between metallic alloy elements and nonmetallic tramp elements, or by mechanical entrapment of nonmetallic slag or refractory particles. The article reviews the considerations of flux formulation during shielded metal arc welding and flux cored arc welding (FCAW). It describes the types of fluxes used for submerged arc welding and FCAW as well as five essential groups of flux ingredients and their interactions.
Book Chapter
Nature and Behavior of Fluxes Used for Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001339
EISBN: 978-1-62708-173-3
... Abstract Fluxes are added to the welding environment to improve arc stability, to provide a slag, to add alloying elements, and to refine the weld pool. This article describes the effect of oxygen that directly reacts with alloying elements to alter their effective role by reducing...
Abstract
Fluxes are added to the welding environment to improve arc stability, to provide a slag, to add alloying elements, and to refine the weld pool. This article describes the effect of oxygen that directly reacts with alloying elements to alter their effective role by reducing hardenability, promoting porosity, and producing inclusions. It proposes basicity index for welding as a measure of expected weld metal cleanliness and mechanical properties. The article discusses alloy modification in terms of slipping and binding agents, slag formation, and slag detachability. It reviews the types of fluxes for different arc welding processes, such as shielded metal arc welding (SMAW), flux-cored arc welding (FCAW), and submerged arc welding (SAW).
Image
Schematic diagrams of the fluxes of the major diffusing gaseous species in ...
Available to PurchasePublished: 01 January 1994
Fig. 1 Schematic diagrams of the fluxes of the major diffusing gaseous species in aluminizing packs activated with (a) NH 4 X ( X = Cl, Br, or I), (b) NH 4 F, and (c) NaCl. Source: Ref 20 , 21
More
Image
Published: 09 June 2014
Fig. 4 Volumetric element dV with external surfaces A i and heat fluxes q i
More
Image
Diffusive fluxes of nitrogen and carbon at the surface of the ϵ/γ′ compound...
Available to PurchasePublished: 01 August 2013
Fig. 16 Diffusive fluxes of nitrogen and carbon at the surface of the ϵ/γ′ compound layer for a nitrocarburizing time of 4 h at 550 °C (823 K) as a function of the chemical potential of carbon in the gaseous nitrocarburizing atmosphere (here represented as the carbon activity, see Sections 6
More
Image
Classification system for carbon steel electrodes and fluxes used in SAW ap...
Available to PurchasePublished: 01 December 1998
Fig. 7 Classification system for carbon steel electrodes and fluxes used in SAW applications. Source: AWS specification A5.17-89
More
Image
Classification system for low-alloy steel electrodes and fluxes used in SAW...
Available to PurchasePublished: 01 December 1998
Fig. 8 Classification system for low-alloy steel electrodes and fluxes used in SAW applications
More
Image
Classification system for carbon steel electrodes and fluxes used in SAW ap...
Available to PurchasePublished: 01 January 1993
Fig. 3 Classification system for carbon steel electrodes and fluxes used in SAW applications. Source: Ref 12
More
Image
Classification system for low-alloy steel electrodes and fluxes used in SAW...
Available to PurchasePublished: 01 January 1993
Fig. 4 Classification system for low-alloy steel electrodes and fluxes used in SAW applications
More
Image
Equations for the calculation of heat fluxes and temperatures during HPGQ i...
Available to PurchasePublished: 01 February 2024
Fig. 10 Equations for the calculation of heat fluxes and temperatures during HPGQ in a cold chamber with two heat exchangers. Equations for one iteration loop of the mathematical model are given.
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005601
EISBN: 978-1-62708-174-0
... Abstract This article describes the process features, advantages, limitations, and applications of the flux cored arc welding (FCAW) as well as the equipment used in the process. Base metals, namely, carbon and low-alloy steels, stainless steels, and nickel-base alloys, welded by the FCAW...
Abstract
This article describes the process features, advantages, limitations, and applications of the flux cored arc welding (FCAW) as well as the equipment used in the process. Base metals, namely, carbon and low-alloy steels, stainless steels, and nickel-base alloys, welded by the FCAW process are reviewed. The article illustrates the manufacturing process for the electrodes used in FCAW and outlines the classification of carbon and low-alloy steel, stainless steel, and nickel-base electrodes.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001355
EISBN: 978-1-62708-173-3
... Abstract In the flux-cored arc welding (FCAW) process, the heat for welding is produced by an electric arc between a continuous filler metal electrode and a workpiece. This article discusses the advantages and disadvantages and applications of the FCAW process. It schematically illustrates...
Abstract
In the flux-cored arc welding (FCAW) process, the heat for welding is produced by an electric arc between a continuous filler metal electrode and a workpiece. This article discusses the advantages and disadvantages and applications of the FCAW process. It schematically illustrates the semiautomatic FCAW equipment used in the gas-shielded FCAW process. The article discusses the manufacture of flux-cored electrodes and the classification of electrodes, such as carbon and low-alloy steel electrodes, stainless steel electrodes, and nickel-base electrodes. The functions of common core ingredients in FCAW electrodes are listed in a table.
Book Chapter
Magnetic Flux Controllers in Induction Heating and Melting
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005846
EISBN: 978-1-62708-167-2
... Abstract Magnetic flux controllers are materials other than the copper coil that are used in induction systems to alter the flow of the magnetic field. This article describes the effects of magnetic flux controllers on common coil styles, namely, outer diameter coils, inner diameter coils...
Abstract
Magnetic flux controllers are materials other than the copper coil that are used in induction systems to alter the flow of the magnetic field. This article describes the effects of magnetic flux controllers on common coil styles, namely, outer diameter coils, inner diameter coils, and linear coils. It provides information on the role of magnetic flux controllers for whole-body and local area mass-heating applications, continuous induction tube welding, seam-annealing inductors, and various induction melting systems, namely, channel-type, crucible-type, and cold crucible systems. The article also describes the benefits of the flux controllers for induction heat treating processes such as single-shot and scanning.
Book Chapter
Dross, Melt Loss, and Fluxing of Light Alloy Melts
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005285
EISBN: 978-1-62708-187-0
... implications of dross, and in-plant enhancement or recovery of dross. It discusses the influence of the melter type on dross generation and the influence of charge materials and operating practices on melt loss. Fluxing is a word applied in a broad sense to a number of melt-treating methods. The article also...
Abstract
Dross, which is the oxide-rich surface that forms on melts due to exposure to air, is a term that is usually applied to nonferrous melts, specifically the lighter alloys such as aluminum or magnesium. This article describes dross formation and ways to reduce it, the economic implications of dross, and in-plant enhancement or recovery of dross. It discusses the influence of the melter type on dross generation and the influence of charge materials and operating practices on melt loss. Fluxing is a word applied in a broad sense to a number of melt-treating methods. The article also discusses the in-furnace treatment with chemical fluxes.
Image
Continuous bar-end heater with magnetic flux concentrator. Courtesy of Flux...
Available to Purchase
in Magnetic Flux Controllers in Induction Heating and Melting
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 20 Continuous bar-end heater with magnetic flux concentrator. Courtesy of Fluxtrol, Inc.
More
Image
Control volume of the heat flux field, liquid mass flux field, and diffusiv...
Available to Purchase
in Computational Modeling of Induction Melting and Experimental Verification
> Induction Heating and Heat Treatment
Published: 09 June 2014
Image
Published: 09 June 2014
Fig. 19 Determination of the magnetic flux Φ of the magnetic flux density vector Φ through surface s
More
Image
Published: 01 January 1993
1