Skip Nav Destination
Close Modal
Search Results for
fluorides
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 441 Search Results for
fluorides
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003587
EISBN: 978-1-62708-182-5
... and fluoride salts with the aid of illustrations and equations. molten salt fused salt corrosion pitting electrochemical reaction thermal gradients container material nitrates nitrites fluoride salt MOLTEN SALTS, often called fused salts, are used in many engineering systems. They can cause...
Abstract
Molten salts, or fused salts, can cause corrosion by the solution of constituents of the container material, selective attack, pitting, electrochemical reactions, mass transport due to thermal gradients, and reaction of constituents and impurities of the molten salt with the container material. This article describes a test method performed using thermal convection loop for corrosion studies of molten salts. It discusses the purification of salts that are used in the Oak Ridge molten salt reactor experiment. The article also reviews the corrosion characteristics of nitrates/nitrites and fluoride salts with the aid of illustrations and equations.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006031
EISBN: 978-1-62708-172-6
... Abstract Polyvinylidene fluoride (PVDF)-based coatings are typically used in outdoor applications that require exceptionally high performance and excellent long-term exterior durability with little maintenance. This article provides a background of three fluoropolymers most commonly used...
Abstract
Polyvinylidene fluoride (PVDF)-based coatings are typically used in outdoor applications that require exceptionally high performance and excellent long-term exterior durability with little maintenance. This article provides a background of three fluoropolymers most commonly used for coatings, namely, PVDF, polyvinyl fluoride, and polytetrafluoroethylene. It focuses on general properties, polymerization, resin types, coating formulation, technology of organic coatings, coating properties, and health and related safety considerations of PVDF. The article describes the application and typical end uses of PVDF-based coatings and the opportunities for improvement in PVDF-based coatings as with all organic coatings.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004182
EISBN: 978-1-62708-184-9
... Abstract This article provides the corrosion data for materials in hydrofluoric acid (HF) and anhydrous hydrogen fluoride (AHF). These materials include carbon and low-alloy steels, austenitic stainless steels, nickel-rich austenitic stainless steels, nickel and nickel-base alloys, copper...
Abstract
This article provides the corrosion data for materials in hydrofluoric acid (HF) and anhydrous hydrogen fluoride (AHF). These materials include carbon and low-alloy steels, austenitic stainless steels, nickel-rich austenitic stainless steels, nickel and nickel-base alloys, copper alloys, precious metals, and non-metals. The article also discusses the hydrogen blistering and stress-corrosion cracking of carbon steels in high-temperature HF and AHF.
Image
Published: 01 January 2006
Fig. 10 Corrosion rates of carbon steels in static anhydrous hydrogen fluoride (AHF) liquid and vapor. These data emphasize that liquid AHF is more corrosive than vapor, and that carbon steels have acceptable corrosion in static AHF at 300 °C (570 °F). The critical point occurs at 188 °C (370
More
Image
Published: 30 September 2015
Fig. 2 (a) Polyvinyl fluoride (PVF). (b) Polytetrafluoroethylene (PTFE). (c) Polyvinylidene fluoride (PVDF)
More
Image
Published: 30 September 2015
Fig. 3 Gloss retention during Florida exposure. PVDF, polyvinylidene fluoride; PVF, polyvinyl fluoride
More
Image
Published: 30 September 2015
Fig. 4 Color change during Florida exposure. PVDF, polyvinylidene fluoride; PE, polyester
More
Image
Published: 30 September 2015
Fig. 3 Beryllium pebble made from reduced beryllium fluoride
More
Image
in Production of Dicalcium Phosphate with Controlled Morphology and Reactivity
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 6 Change in fluoride ion concentration (open circle) and pH in a solution that contains 20 mg/L of fluoride ions by adding dicalcium phosphate reagent. Source: Ref 9 . Creative Commons License (CC BY-ND 4.0), https://creativecommons.org/licenses/by-nd/4.0/
More
Image
in Production of Dicalcium Phosphate with Controlled Morphology and Reactivity
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 9 Effect of fluoride ion content on the lag time observed in the reaction of dicalcium phosphate dihydrate with fluoride ions. NaF, sodium fluoride. Source: Ref 27 , © 2011 International Association of Ecotechnology Research
More
Image
in Production of Dicalcium Phosphate with Controlled Morphology and Reactivity
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 11 Change in fluoride ion concentration in the solution containing 20 mg/L of fluoride ions by adding DCPD reagent (unshaded circle) and DCPD treated with water (shaded circle). DCPD, dicalcium phosphate dihydrate. Source: Ref 27 , © 2011 International Association of Ecotechnology
More
Image
in Production of Dicalcium Phosphate with Controlled Morphology and Reactivity
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 12 Effect of mixing HAp powder with DCPD reagent on the reactivity of fluoride ions. With the addition of HAp, the reaction became instantaneous without lag time. DCPD, dicalcium phosphate dihydrate; HAp, hydroxyapatite. Source: Ref 29 . © 2013 Tafu M, et al.
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004181
EISBN: 978-1-62708-184-9
... Abstract Hydrochloric acid (HCl) may contain traces of impurities that will change the aggressiveness of the solution. This article discusses the effects of impurities such as fluorides, ferric salts, cupric salts, chlorine, and organic solvents, in HCl. It describes the corrosion resistance...
Abstract
Hydrochloric acid (HCl) may contain traces of impurities that will change the aggressiveness of the solution. This article discusses the effects of impurities such as fluorides, ferric salts, cupric salts, chlorine, and organic solvents, in HCl. It describes the corrosion resistance of various metals and alloys in HCl, including carbon and alloy steels, austenitic stainless steels, standard ferritic stainless steels, nickel and nickel alloys, copper and copper alloys, corrosion-resistant cast iron, zirconium, titanium and titanium alloys, tantalum and its alloys, and noble metals. The article illustrates the effect of HCl on nonmetallic materials such as natural rubber, neoprene, thermoplastics, and reinforced thermoset plastics. It also tabulates the corrosion of various metals in dry hydrogen chloride.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003609
EISBN: 978-1-62708-182-5
... for the different metal-fused salt systems are also provided. The metal-fused salt systems include molten fluorides, chloride salts, molten nitrates, molten sulfates, hydroxide melts, and carbonate melts. The article concludes with information on prevention of molten salt corrosion. corrosion molten salts...
Abstract
This article discusses two general mechanisms of corrosion in molten salts. One is the metal dissolution caused by the solubility of the metal in the melt. The second and most common mechanism is the oxidation of the metal to ions. Specific examples of the types of corrosion expected for the different metal-fused salt systems are also provided. The metal-fused salt systems include molten fluorides, chloride salts, molten nitrates, molten sulfates, hydroxide melts, and carbonate melts. The article concludes with information on prevention of molten salt corrosion.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006434
EISBN: 978-1-62708-192-4
... categories of solid lubricant coatings, including graphite, graphite fluoride, transition metal dichalcogenides, diamond-like-carbon, polymeric materials, and metallic films. The article presents a description of deposition methods from the simplest processes involving burnishing and impingement in open air...
Abstract
Solid lubricants consist of materials placed at the interface between moving bodies to mitigate friction and wear. This article begins with a historical overview of solid lubricants and discuses the characteristics and fundamental aspects of solid lubricants. It describes the material categories of solid lubricant coatings, including graphite, graphite fluoride, transition metal dichalcogenides, diamond-like-carbon, polymeric materials, and metallic films. The article presents a description of deposition methods from the simplest processes involving burnishing and impingement in open air to modern vacuum-based methods for solid lubricants. It concludes with a discussion on metrics that can be used to qualify solid lubricants in high-consequence applications.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001455
EISBN: 978-1-62708-173-3
...-active and fluoride-active types of fluxes that are used for torch, furnace, or dip brazing processes. The article explains the steps to be performed, including the designing of joints, preblaze cleaning, assembling, brazing techniques (dip brazing, furnace and torch brazing, fluxless vacuum brazing...
Abstract
Aluminum, a commonly used base material for brazing, can be easily fabricated by most manufacturing methods, such as machining, forming, and stamping. This article outlines non-heat-treatable wrought alloys typically used as base metals for the brazing process. It highlights chloride-active and fluoride-active types of fluxes that are used for torch, furnace, or dip brazing processes. The article explains the steps to be performed, including the designing of joints, preblaze cleaning, assembling, brazing techniques (dip brazing, furnace and torch brazing, fluxless vacuum brazing), flux removal techniques, and postbraze heat treatment processes. It concludes with information on the safety precautions to be followed during the brazing process.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006483
EISBN: 978-1-62708-207-5
... producing aluminum in an aluminum smelter. The article also discusses various environmental issues, such as fluoride recovery; perfluorocarbons, polycyclic aromatic hydrocarbons, and sulfur emissions; spent pot lining; and development of inert anodes and CO2 emissions. aluminum, purification...
Abstract
This article describes the Bayer process for the purification of alumina. The process includes four major stages: digestion, clarification, precipitation, and calcination. The article discusses the aluminum electrolytic process in terms of aluminum electrolysis cell design, magnetohydrodynamic forces, and cathode lining. It reviews the electrochemical reactions and thermodynamics for aluminum electrolysis standard Gibbs. The article also describes the cell operations and cell stability, as well as the key indicators of cell performance. It schematically illustrates the typical costs producing aluminum in an aluminum smelter. The article also discusses various environmental issues, such as fluoride recovery; perfluorocarbons, polycyclic aromatic hydrocarbons, and sulfur emissions; spent pot lining; and development of inert anodes and CO2 emissions.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006884
EISBN: 978-1-62708-392-8
...) 2 ). Dicalcium phosphate, DCP (CaHPO 4 ), consists of crystal water along with anhydrous (DCPA) and dihydrate (DCPD; CaHPO 4 ·2H 2 O) salts. In the 1970s, it was concluded that DCPD reacts with fluoride ions in an aqueous solution and forms stable fluorapatite (FAp; Ca 10 (PO 4 ) 6 F 2 ) ( Ref 1...
Abstract
Calcium phosphates react to form more stable salts in aqueous solutions. This phenomenon has been applied to the solidification process for the dental and medical cement calcium phosphate cement, which consists of multiple phases of calcium phosphates and calcium salts; solidification occurs by the formation of hydroxyapatite. Dicalcium phosphate consists of crystal water along with anhydrous and dihydrate salts. This article summarizes research achievements regarding dicalcium phosphate dihydrate (DCPD) production with controlled morphology and reactivity, including effects of an additive and of production conditions on precipitation. It also summarizes achievements made in the hybridization of nano-apatite onto DCPD particles.
Image
in Production of Dicalcium Phosphate with Controlled Morphology and Reactivity
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 8 Schematic of the reaction mechanism of the dicalcium phosphate dihydrate (DCPD) particle with small amounts of fluoride ions. CaP, calcium phosphate; DCPD, dicalcium phosphate dihydrate; F − , fluoride ion; FAp, fluorapatite
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005300
EISBN: 978-1-62708-187-0
... and fluorides have been evaluated. Figure 2 shows the equilibrium diagram of cryolite. Fig. 2 Equilibrium diagram of cryolite The removal of aluminum oxide by halides has its foundations in basic research and development on the systems NaF-AlF 3 -Al 2 O 3 and NaF-AlF 3 . Studies...
Abstract
Aluminum fluxing is a step in obtaining clean molten metal by preventing excessive oxide formation, removing nonmetallic inclusions from the melt, and preventing and/or removing oxide buildup on furnace walls. This article discusses the solid fluxes and gas fluxes used in foundries. It reviews the classification of solid fluxes depending on their use and function at the foundry operation. These include cover fluxes, drossing fluxes, cleaning fluxes, and furnace wall cleaner fluxes. The article also examines the operational practices and applications of the flux injection in the foundries. It describes the applications of the aluminum fluxing such as crucible furnaces, transfer ladles, reverberatory furnaces, and holding/casting furnaces.
1