Skip Nav Destination
Close Modal
Search Results for
fluorescence microscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 141 Search Results for
fluorescence microscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 12 September 2022
Fig. 19 Fluorescence microscopy (live/dead assay of encapsulated chondrocytes in alginate gels) images of (a–d) single layer (alginate gel and PCL), (e–h) single layer (alginate gel and PCL) + one stacking layer of PCL, (i–l) alginate gel and PCL hybrid scaffold (3 by 3 by 1.8 mm). (a, e, i
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009075
EISBN: 978-1-62708-177-1
...-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The article also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical...
Abstract
The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This article is intended to provide information that will help an investigator select the appropriate microscopy technique for the specific analysis objectives with a given composite material. The article opens with a discussion of macrophotography and microscope alignment, and then goes on to describe various illumination techniques that are useful for specific analysis requirements. These techniques include bright-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The article also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical microscopy.
Image
Published: 12 September 2022
Fig. 14 Histological sections of tissue-engineered skin constructs in vitro. Sections show cells using fluorescent microscopy and Masson’s trichrome staining, respectively. The keratinocytes (HaCaT-mCherry) exhibit red fluorescence while the fibroblasts (NIH 3T3-eGFP) appear in green (a–c
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003464
EISBN: 978-1-62708-195-5
...-fluorescence. The article also provides information on transmitted light microscopy. composite materials epi-bright-field illumination epi-dark-field illumination epi-fluorescence epi-polarized light failure analysis illumination methods mounting polishing quality control reflected light...
Abstract
Microscopy is a valuable tool in materials investigations related to problem solving, failure analysis, advanced materials development, and quality control. This article describes the sample preparation techniques of composite materials. These techniques include mounting, rough grinding, and polishing. The preparation techniques of ultrathin sections are also summarized. The article explains the illumination methods used by reflected light microscopy to view a specimen. These consist of epi-bright-field illumination, epi-dark-field illumination, epi-polarized light, and epi-fluorescence. The article also provides information on transmitted light microscopy.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009080
EISBN: 978-1-62708-177-1
...-light techniques. The reflected-light optical microscopy techniques that were used to enhance the contrast and show the morphology include the sample as polished, chemically etched, and using epi-fluorescence. All of these techniques were performed on the same cross section. In the as- polished...
Abstract
This article describes the dispersed-phase toughening of thermoset matrices by the development of multiphase-structure thermosetting matrices using rubber and/or thermoplastic materials. It discusses two main methods for manufacturing prepregs, namely, single-pass impregnation and double-pass impregnation. The article illustrates reflected-light optical microscopy techniques to evaluate the morphology of thermoplastic materials for determining the material quality and correlating key microstructural features with material performance.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... Abstract This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
... electron microscopy; XRF, x-ray fluorescence; XPS, x-ray photoelectron spectroscopy; WDS, wavelength dispersion spectrometry; Z , atomic number; TEM, transmission electron microscopy. Source: Ref 8 X-Ray Fluorescence Spectrometry (XRFS) X-ray fluorescence spectrometry (XRFS) is an instrumental...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
.... The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques...
Abstract
This article discusses the capabilities and limitations of various material characterization methods that assist in the selection of a proper analytical tool for analyzing particulate materials. Commonly used methods are microanalysis, surface analysis, and bulk analysis. The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques, such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009081
EISBN: 978-1-62708-177-1
... Abstract This article describes methods for analyzing impact-damaged composites in the aircraft industry. These include C-scan and x-radiography methods and optical microscopy. The article reviews brittle-matrix composite and tough-matrix composite failures. It explains the different types...
Abstract
This article describes methods for analyzing impact-damaged composites in the aircraft industry. These include C-scan and x-radiography methods and optical microscopy. The article reviews brittle-matrix composite and tough-matrix composite failures. It explains the different types of composite failure mechanisms such as thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure mechanisms, toughened thermoset-matrix composite failure mechanisms, dispersed-phase and rubber-toughened thermoset-matrix composite failure mechanisms, and particle interlayer-toughened composite failure mechanisms.
Image
in Introduction to Characterization of Organic Solids and Organic Liquids
> Materials Characterization
Published: 15 December 2019
: low-energy ion-scattering spectroscopy; MFS: molecular fluorescence spectroscopy; NAA: neutron activation analysis; NMR: nuclear magnetic resonance; OM: optical metallography; RS: Raman spectroscopy; SAXS: small-angle x-ray scattering; SEM: scanning electron microscopy; SIMS: secondary ion mass
More
Image
Published: 15 December 2019
Fig. 1 Flow charts of common techniques for characterization of metals and alloys. AES: Auger electron spectroscopy; AFM: atomic force microscopy; COMB: high-temperature combustion; EDS: energy-dispersive x-ray spectroscopy; EFG: elemental and functional group analysis; EPMA: electron probe x
More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003252
EISBN: 978-1-62708-199-3
... Abstract Microstructural analysis is the combined characterization of the morphology, elemental composition, and crystallography of microstructural features through the use of a microscope. This article reviews three types of the most commonly used electron microscopies in metallurgical studies...
Abstract
Microstructural analysis is the combined characterization of the morphology, elemental composition, and crystallography of microstructural features through the use of a microscope. This article reviews three types of the most commonly used electron microscopies in metallurgical studies, namely scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. It briefly describes the operating principles, instrumentation which includes energy dispersive X-ray detectors, spatial resolution, typical use of the techniques, elemental analysis detection threshold and precision, limitations, sample requirements, and the capabilities of related techniques.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003527
EISBN: 978-1-62708-180-1
... or sectioning for scanning electron microscopy examination and/or metallography. It is important to photograph the component at each stage of the process to retain the visual information available and the component condition at each step. Field Photographic Documentation Composition Photographic...
Abstract
This article reviews photographic principles, namely, visual examination, field photographic documentation, and laboratory photographic documentation, as applied to failure analysis and the specific techniques employed in both the field and laboratory. It provides information on the photographic equipment used in failure analysis and on film and digital photography. The article describes the basics of photography and the uses of different types of lighting in photography of a fractured surface. The article also addresses the techniques involved in macrophotography and microscopic photography as well as other special techniques.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009072
EISBN: 978-1-62708-177-1
... of microscopy techniques, including polarized light, bright- and dark-field illumination, and epi-fluorescence. The viewing of dyed specimens is discussed in the article, “Viewing the Specimen Using Reflected-Light Microscopy,” in this Volume. Molds for Mounting Composite Materials The molds used...
Abstract
This article describes how composite specimens are sectioned, documented, and labeled during sample preparation. The mounting procedures for the specimen are summarized. The article explains sample clamping, which involves not mounting the specimens using an adhesive or casting resin and corresponds to clamped samples used in automated polishing heads. It details that cavity molds involve mounting the composite specimens using a casting resin in a preset mold. The article also discusses the mounting of composite materials for hand polishing.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009079
EISBN: 978-1-62708-177-1
... Abstract This article describes the microcrack analysis of composite materials using bright-field illumination, polarized light, dyes, dark-field illumination, and epi-fluorescence. bright-field illumination composite materials dark-field illumination dyes epi-fluorescence microcrack...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... Acronyms: Techniques APM atom probe microanalysis AAS atomic absorption spectrometry AEM analytical electron microscopy AES Auger electron spectroscopy; atomic emission spectrometry AFS atomic fluorescence spectrometry ATEM analytical transmission...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009085
EISBN: 978-1-62708-177-1
... will allow sectioning through the center of the strike and thus hold the fragile material in place, minimizing artifacts. The specimen can be remounted to provide adequate handling of the microscopic sample. Polished cross-sectional mounts can be examined with a variety of microscopy techniques...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
... spectrometry; LEISS: low-energy ion-scattering spectroscopy; MFS: molecular fluorescence spectroscopy; NAA: neutron activation analysis; NMR: nuclear magnetic resonance; OM: optical metallography; RS: Raman spectroscopy; SAXS: small-angle x-ray scattering; SEM: scanning electron microscopy; SIMS: secondary ion...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003755
EISBN: 978-1-62708-177-1
... Abstract This article outlines the beam/sample interactions and the basic instrumental design of a scanning electron microscopy (SEM), which include the electron gun, probeforming column (consisting of magnetic electron lenses, apertures, and scanning coils), electron detectors, and vacuum...
Abstract
This article outlines the beam/sample interactions and the basic instrumental design of a scanning electron microscopy (SEM), which include the electron gun, probeforming column (consisting of magnetic electron lenses, apertures, and scanning coils), electron detectors, and vacuum system. It discusses the contrasts mechanisms used for imaging and analyzing materials in the SEM. These include the topographic contrast, compositional contrast, and electron channeling pattern and orientation contrast. Special instrumentation and accessory equipment used at elevated pressures and during the X-ray microanalysis are reviewed. The article also provides information on the sample preparation procedure and the materials applications of the SEM.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003249
EISBN: 978-1-62708-199-3
... Information obtained/method Elemental Structural Morphological Bulk X-ray fluorescence spectroscopy (XRF) Optical emission spectroscopy (OES) Combustion/inert fusion analysis (LECO) X-ray diffraction (XRD) Macrophotography (b) Micro Scanning electron microscopy (SEM) Electron probe...
Abstract
This article provides a general introduction of materials characterization and describes the principles and applications of a limited number of techniques that are most commonly used to characterize the composition and structure of metals used in engineering systems. It briefly describes the classification of materials characterization methods including, bulk elemental characterization, bulk structural characterization, microstructural characterization, and surface characterization. Further, the article reviews the selection of materials characterization methods most commonly used with metals.