Skip Nav Destination
Close Modal
Search Results for
fluidized-bed equipment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 147
Search Results for fluidized-bed equipment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005927
EISBN: 978-1-62708-166-5
... by conventional gas analysis is possible, and fluidized-bed furnaces are equipped with sample ports and probes so that suitable measurements can be taken. Chemical Vapor Deposition Atmosphere The coating precursors are either directly injected into fluidized beds (mixing with the fluidizing gas prior...
Abstract
This article discusses the important characteristics of fluidized beds. The total space occupied by a fluidized bed can be divided into three zones: grid zone, main zone, and above-bed zone. The article discusses the various types of atmospheres of fluidized beds, such as oxidizing and decarburizing atmosphere; nitrocarburizing and nitriding atmosphere; carburizing and carbonitriding atmosphere; and chemical vapor deposition atmosphere. External resistance heating, external combustion heating, internal resistance heating, direct resistance heating, submerged combustion heating, and internal combustion heating can be used to achieve the heat input for a fluidized bed. The article also describes the operations, design considerations, and applications of fluidized-bed furnaces in heat treating. Thermochemical surface treatments, such as carburizing, carbonitriding, nitriding, and nitrocarburizing, are also discussed. Finally, the article reviews the principles and applications of fluidized-bed heat treatment.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003198
EISBN: 978-1-62708-199-3
...), and fluidized-bed equipment (external-resistance-heated fluidized beds). It describes various auxiliary equipment used in cold-wall furnaces, namely, heating elements and pumping systems. Five types of heat-resistant alloys are used for furnace parts, trays, and fixtures: Fe-Cr alloys, Fe-Cr-Ni alloys, Fe-Ni-Cr...
Abstract
Batch furnaces and continuous furnaces are commonly used in heat treating. This article provides a detailed account of various heat treating equipment and its furnace types, including salt bath equipment (externally heated, immersed-electrode and submerged-electrode furnaces), and fluidized-bed equipment (external-resistance-heated fluidized beds). It describes various auxiliary equipment used in cold-wall furnaces, namely, heating elements and pumping systems. Five types of heat-resistant alloys are used for furnace parts, trays, and fixtures: Fe-Cr alloys, Fe-Cr-Ni alloys, Fe-Ni-Cr alloys, nickel-base alloys and cobalt-base alloys. The article lists the recommended applications for alloys for parts and fixtures for various types of heat treating furnaces.
Image
in Thermoreactive Deposition/Diffusion Process for Surface Hardening of Steels
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005958
EISBN: 978-1-62708-168-9
... Abstract This article provides a detailed discussion on the heating equipment used for austenitizing, quenching, and tempering tool steels. These include salt bath furnaces, controlled atmosphere furnaces, fluidized-bed furnaces, and vacuum furnaces. The article discusses the types of nitriding...
Abstract
This article provides a detailed discussion on the heating equipment used for austenitizing, quenching, and tempering tool steels. These include salt bath furnaces, controlled atmosphere furnaces, fluidized-bed furnaces, and vacuum furnaces. The article discusses the types of nitriding and nitrocarburizing processes and the equipment required for heat treating tool steels to improve hardness, wear resistance, and thermal fatigue. The various nitriding and nitrocarburizing processes covered are salt bath nitrocarburizing, gas nitriding and nitrocarburizing, and plasma nitriding and nitrocarburizing.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005794
EISBN: 978-1-62708-165-8
... Abstract The fluidized bed provides a means for exchanging heat between a metal part, the solid particles, and the fluidizing gas and which is viable for quenching. This article briefly considers the design aspects of the gas distributor, plenum, container, immersed cooling tubes and surface...
Abstract
The fluidized bed provides a means for exchanging heat between a metal part, the solid particles, and the fluidizing gas and which is viable for quenching. This article briefly considers the design aspects of the gas distributor, plenum, container, immersed cooling tubes and surface air spray cooling system in the quenching fluidized bed. It describes the fundamental factors affecting quenching power of the fluidized beds, namely, particle size, particle material, fluidizing gas composition, fluidizing gas flow rate, bed temperature and pressure, and the arrangement of quenched parts with respect to one another and to the bed. The article discusses the advantages, disadvantages, various applications and processes, including conventional batch quenching, two-step batch quenching, and continuous quenching of fluidized bed quenching, in detail.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005773
EISBN: 978-1-62708-165-8
... to achieve high hardness Low-temperature salt bath process Least expensive equipment No distortion Prenitriding required Bath maintenance required Salt reagents must be washed off (easier than high-temperature salts) Low-temperature fluidized-bed process No need to wash...
Abstract
The thermoreactive deposition and diffusion process is a heat-treatment-based method to form coatings with compacted layers of carbides, nitrides, or carbonitrides, onto some carbon/nitrogen-containing materials, including steels. The amount of active carbide forming elements/nitride forming elements, coating temperatures and time, and thickness of substrates influence the growth rate of coatings. This article lists carbide and nitride coatings that are formed on carbon/nitrogen-containing metallic materials, and describes the coating process and mechanism of coating reagents. It details the growth process and nucleation process of carbide and nitride coatings formed on the metal surface. The article discusses the advantages, disadvantages, and characteristics of the various coating processes, including high-temperature salt bath carbide coating, high-temperature fluidized-bed carbide coating, and low-temperature salt bath nitride coating.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005992
EISBN: 978-1-62708-166-5
... tempering and flame heating are also used but will not be discussed here. Table 2 provides a comparative summary of the different heating media ( Ref 7 ). A broad range of heat transfer rates are possible over operating temperatures which may range from 100 to 1050 °C (212 to 1920 °F) with fluidized bed...
Abstract
Heating time and holding time refer, respectively, to the time required to bring a part to temperature and the time a part is held at the required heat-treatment temperature. This article provides information on heating times and holding times with different types of furnace systems during steel hardening and tempering.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005230
EISBN: 978-1-62708-187-0
... of solution heat treatment. Some products may undergo recrystallization and grain growth during solution heat treatment, which may restrict the maximum temperature and time allowed for solution heat treatment. Solution heat treatment is normally performed in air, but molten salt baths or fluidized beds...
Abstract
This article provides an overview of heat treatment processes, namely, solution heat treatment, quenching, natural aging, and artificial aging. It contains a table that lists the various heat treatment tempers commonly practiced for nonferrous castings. The article describes microstructural changes that occur due to the heat treatment of cast alloys.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001280
EISBN: 978-1-62708-170-2
... of various coating materials, namely, silicate glasses, oxides, carbides, silicides, and cermets. It reviews ceramic coating methods: brushing, spraying, dipping, flow coating, combustion flame spraying, plasma-arc flame spraying, detonation gun spraying, pack cementation, fluidized-bed deposition, vapor...
Abstract
Ceramic coatings are applied to metals to protect them against oxidation and corrosion at room temperature and at elevated temperatures. This article provides a detailed account of the factors to be considered when selecting a ceramic coating and describes the characteristics of various coating materials, namely, silicate glasses, oxides, carbides, silicides, and cermets. It reviews ceramic coating methods: brushing, spraying, dipping, flow coating, combustion flame spraying, plasma-arc flame spraying, detonation gun spraying, pack cementation, fluidized-bed deposition, vapor streaming, troweling, and electrophoresis. The article also includes information on the evaluation of the quality of ceramic coatings.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007014
EISBN: 978-1-62708-450-5
... heat-transfer rates for various quench media Table 1 Comparison of typical heat-transfer rates for various quench media Quenching medium Heat-transfer rate, W/m 2 · K Still air 50–80 Nitrogen, 1 bar 100–150 Salt bath or fluidized bed 350–500 Nitrogen, 10 bar 400–500...
Abstract
This article presents a detailed discussion on the characteristics, types, properties, quenchants, applications, advantages, and disadvantages of various types of quenching: air quenching, water quenching, rinse quenching, time quenching, press quenching, delayed quenching, fluidized-bed quenching, ultrasonic quenching, intercritical quenching, subcritical quenching, ausbay quenching, hot isotactic press quenching, slack quenching, differential quenching, and double quenching.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005957
EISBN: 978-1-62708-166-5
..., elevator hearth furnace, fluidized-bed furnace, humpback furnace, induction equipment, integral quench furnace, monorail furnace, pit furnace, pusher furnace, quartz tube equipment, resistance heating equipment, roller hearth furnace, rotating finger furnace, salt bath furnace, screw conveyor furnace...
Abstract
Furnaces are one of the most versatile types of industrial appliances that span many different areas of use. This article discusses the classification of various furnaces used in heat treating based on the mode of operation (batch-type furnaces and continuous-type furnaces), application, heating method, mode of heat transfer, type of materials handling system, and mode of waste heat recovery (recuperation and regeneration). It provides information on uniform temperature distribution, the general requirements and selection criteria for insulation materials, as well as the basic safety requirements of these furnaces.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006007
EISBN: 978-1-62708-172-6
... spray equipment or land on the pipe, causing coating anomalies. Magnets in the fluidized bed remove steel contaminants from the powder. Powder application in FBE plants uses a coating chamber and spray guns that incorporate electrostatics to reduce overspray ( Ref 35 ). Most plants today (2015) mass...
Abstract
Functional fusion-bonded epoxy (FBE) coatings are used as external pipe coatings, base layer for three-layer pipe-coating systems, internal pipe linings, and corrosion coatings for concrete reinforcing steel (rebar). This article provides information on the chemistries of FBE, and discusses the application procedures for internal and external FBE pipe coating. The procedures involve pipe inspection, surface preparation, heating, powder application, curing, cooling, coating inspection, and repairing. It describes the problems and solutions for FBE external pipe coatings, girth weld FBE application, FBE custom coatings, internal FBE pipe linings, and FBE rebar coatings.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0004050
EISBN: 978-1-62708-183-2
... by formation of a stable, slow-growing, dense oxide layer. Hot Corrosion Hot corrosion is a serious problem in power generation equipment, gas turbines, internal combustion engines, fluidized bed combustion, industrial waste incinerators, and paper and pulp industries. Hot corrosion is the accelerated...
Abstract
This article describes the specific features and mechanisms of oxidation in thermal spray coatings. It discusses the two forms of hot corrosion in sulfur-containing combustion, namely high-temperature hot corrosion and low-temperature hot corrosion. The article reviews the behavior of corrosion-resistant coatings in boilers. The effects of high-temperature corrosion in waste incinerators are detailed. The article also examines the effects of erosion-corrosion in fluidized bed combustion boilers.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005719
EISBN: 978-1-62708-171-9
... general categories: gravity-fed hoppers, volumetric powder feeders, and fluidized-bed powder feeders. The oldest of these is the gravity-fed hopper. These devices are simple containers, usually with funnel-shaped bottoms, that allow the powder to flow freely, assisted by gravity, from the bottom...
Abstract
This article discusses various control processes carried out in powder feeding, thermal spraying, and gas flow of the thermal spray process to standardize the coating quality. Quality of the entire powder feeding process can be achieved by controlling the processing of feeding equipment as well as the characteristics of the powder being fed. Gas flow control can be achieved by using rotameters, critical orifices, and thermal mass flowmeters, whose ability to provide useful information is defined by their resolution, accuracy, linearity, and repeatability. The commercial thermal spray controls discussed here include the open-loop input-based, open-loop output-based, closed-loop input-based, and closed-loop output-based or adaptive controls. The article discusses the common causes and practical solutions for arc starting problems. It also outlines certain important developments in measuring individual and collective particle velocities, temperature, and trajectories as well as other plume characteristics for the plasma spray process.
Book Chapter
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004161
EISBN: 978-1-62708-184-9
... using coal as a primary fuel. The combustion process—cyclone, pulverized-coal, or fluidized-bed firing—determines the type and characteristics of the ash. Waste ash, fly ash, and bottom ash are generated in large volumes and must be dealt with in an environmentally acceptable manner. Fly ash comprises...
Abstract
Ash handling is a major challenge for utilities and industries using coal as a primary fuel. This article discusses the operating problems associated with conventional fly ash/bottom ash handling systems. It describes the two types of fly ash systems, namely, dry and wet fly ash systems. The article presents the ways to minimize operating problems that occur due to corrosion, erosion, scaling, and plugging.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
..., agricultural equipment, gas turbine, and other applications. Electroplated chromium is used on carbon steels to provide better wear resistance and good corrosion resistance at lower cost than using an uncoated stainless steel. Paints and polymeric coatings are used to prevent corrosion or other types...
Abstract
Coatings and other surface modifications are used for a variety of functional, economic, and aesthetic purposes. Two major applications of thermal spray coatings are for wear resistance and corrosion resistance. This article discusses thermal (surface hardening) and thermochemical (carburizing, nitriding, and boriding) surface modifications, electrochemical treatments (electroplating, and anodizing), chemical treatments (electroless plating, phosphating, and hot dip coating), hardfacing, and thermal spray processes. It provides information on chemical and physical vapor deposition techniques such as conventional CVD, laser-assisted CVD, cathodic arc deposition, molecular beam epitaxy, ion plating, and sputtering.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001313
EISBN: 978-1-62708-170-2
... for molybdenum Type Deposition process Molybdenum silicide Fluidized bed, pack cementation, slip pack, plasma spray, electrophoresis Molybdenum silicide and chromium Pack cementation Molybdenum silicide and chromium, boron Pack cementation Molybdenum silicide and chromium, aluminum, boron...
Abstract
This article addresses surface cleaning, finishing, and coating operations that have proven to be effective for molybdenum, tungsten, tantalum, and niobium. It describes standard procedures for abrasive blasting, molten caustic processing, acid cleaning, pickling, and solvent and electrolytic cleaning as well as mechanical grinding and finishing. The article also provides information on common plating and coating methods, including electroplating, anodizing, and oxidation-resistant coatings.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006052
EISBN: 978-1-62708-175-7
... a static, rotary, and fluidized-bed furnace ( Ref 6 , 7 , 8 , 9 ), and it is ideally suited for the production of submicron and finer tungsten carbide. The Menstruum process is used to produce macrocrystalline tungsten carbide for very coarse tungsten carbide. It combines an aluminothermic reduction...
Abstract
This article discusses the methods and procedures used to extract, purify, and synthesize tungsten carbide powder, metal, and other refractory carbide/nitride powders used in hard metal production. Selection of powders, additives, equipment, and processes for making ready-to-press hard metal powders is also discussed. The article also provides information on the emerging technologies for tungsten carbide synthesis and binders in hard metal production, such as cobalt, iron, and nickel.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005772
EISBN: 978-1-62708-165-8
... bath boriding, and fluidized-bed boriding. The article briefly describes the chemical vapor deposition process, which has emerged to be dominant among metal-boride deposition processes. borides boriding cermets chemical vapor deposition ferrous metals nonferrous metals pack cementation...
Abstract
Boriding is a thermochemical diffusion-based surface-hardening process that can be applied to a wide variety of ferrous, nonferrous, and cermet materials. It is performed on metal components as a solution for extending the life of metal parts that wear out too quickly in applications involving severe wear. This article presents a variety of methods and media used for boriding of ferrous materials, and explains their advantages, limitations, and applications. These methods include pack cementation boriding, gas boriding, plasma boriding, electroless salt bath boriding, electrolytic salt bath boriding, and fluidized-bed boriding. The article briefly describes the chemical vapor deposition process, which has emerged to be dominant among metal-boride deposition processes.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005354
EISBN: 978-1-62708-187-0
... (by either liquid or vapor curing) is improved dimensional tolerance control. The rigidity of the aggregate mass is hardened in place around the pattern equipment, and the strength conferred by the chemical binders helps prevent distortion of the aggregate mass when metal is poured into the mold. Nobake...
Abstract
No-bake sand molds are based on the curing of inorganic or organic binders with either gaseous catalysts or liquid catalysts. This article reviews the major aspects of no-bake sand bonding in terms of coremaking, molding methods, and sand processing. It discusses the points to be noted in handling sand-resin mixtures for no-bake molds or cones and lists some advantages of no-bake air-set cores and molds. The article describes the process procedures, advantages, and disadvantages of gas curing and air-setting hardening of sodium silicates. It examines the members of the air-setting organic binders, namely, furan no-bake resins, phenolic no-bake resins, and urethanes. The article provides an overview of gas-cured organic binders. It also illustrates the three commercial systems for sand reclamation: wet reclamation systems, dry reclamation systems, and thermal reclamation.
1