Skip Nav Destination
Close Modal
Search Results for
fluid-flow calculation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 665 Search Results for
fluid-flow calculation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001482
EISBN: 978-1-62708-173-3
... strain history observed in the heat-affected zone of fusion welded materials. fluid-flow calculation free surface deformation fusion welded materials fusion welding heat affect zone liquid-vapor state solid-liquid state solid-solid state validation vapor-plasma state FUSION WELDING...
Abstract
Fusion welding processes involve four phase changes, namely, solid-solid state, solid-liquid, liquid-vapor, and vapor-plasma. Each has its own thermal, momentum, and stress history. This article discusses some important techniques to validate temperature, momentum, stress, and residual strain history observed in the heat-affected zone of fusion welded materials.
Image
Published: 01 December 2004
Fig. 6 Simulation of columnar-to-equiaxed transition in a conventionally cast Al-7Si alloy. (a) Calculation with no fluid flow. (b) Calculation that includes fluid flow. Source: Ref 14
More
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005426
EISBN: 978-1-62708-196-2
... 3 , when calculating compressible flows. The previous equations are expressed in Eulerian form; that is, the time derivative is taken at a fixed point in space. This contrasts with the Lagrangian form, in which the time derivative is taken following a fluid element ( Ref 14 ). Although...
Abstract
Computational fluid dynamics (CFD) is a computationally intensive three-dimensional simulation of thermal fluids systems where non-linear momentum transport plays an important role. This article presents the governing equations of fluid dynamics and an introduction to the CFD techniques. It introduces some common techniques for discretizing the fluid-flow equations and methods for solving the discrete equations. These include finite-difference methods, finite-element metho