Skip Nav Destination
Close Modal
Search Results for
flow-induced vibrations
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 420 Search Results for
flow-induced vibrations
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004155
EISBN: 978-1-62708-184-9
... blade excitation mechanisms during normal operation that include: Synchronous resonance of the blades at a harmonic of the unit running speed Nonuniform flows Blade vibration induced from a vibrating rotor or disc Self-excitation, such as flutter Random excitation—resonance...
Abstract
The steam turbine is the simplest and most efficient engine for converting large amounts of heat energy into mechanical work. This article discusses the primary corrosion mechanisms such as corrosion fatigue, stress-corrosion cracking (SCC), pitting, corrosion, and erosion-corrosion, in steam turbines. It illustrates the various causes of the corrosiveness of the steam turbine environments through a Mollier diagram. The article describes the four parts of design disciplines that affect turbine corrosion, namely, mechanical design, heat transfer, flow and thermodynamics, and physical shape. It lists the ways to control the steam and surface chemistry, and design and material improvements to minimize turbine corrosion.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006444
EISBN: 978-1-62708-190-0
.... An alternative is to excite the specimen mounting apparatus or fixture rather than the specimen itself, so that any contact damage occurs to the mounting apparatus. Even in this case, vibrational energy still must flow into the part from the mounting apparatus, which requires mounting the part in such a way...
Abstract
Vibrothermography, also known as sonic thermography, sonic infrared (IR), thermosonics, and vibroacoustic thermography, is a nondestructive evaluation (NDE) technique for finding cracks and delaminations through vibration-induced heating. This article describes the four parts of the vibrothermography process: vibration of the specimen by a transducer; conversion of vibrational energy into heat by a crack, delamination, and other contacting surfaces; conduction of the heat to an external surface; and infrared detection of the heat with a thermal camera.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... to a reduction in flexibility at this point, and, in the case of a mining rope, can cause jolting when this part of the cable passes onto the winding drum. In steam generators and heat exchangers, flow-induced vibration results in fretting between the tubes and the supports or baffles through which they pass...
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... Engineering Group of Institution of Mechanical Engineers , 3–4 May 1972 , p 213 – 231 12. Connors H.J. , Flow-Induced Vibration and Wear of Steam Generator Tubes , Nucl. Technol. , Vol 55 , Nov 1981 , p 311 — 331 13. Bongers P.J.W. , Dubs P.L.M. , and Linssen T.J.M...
Abstract
This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration, type of contact and vibration, impact fretting, surface finish, and residual stresses. The form, composition, and role of the debris are briefly discussed. The article also describes the measurement, mechanism, and prevention of fretting wear. It concludes with several examples of failures related to fretting wear.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002159
EISBN: 978-1-62708-188-7
... diamond core drill or milling tool In ultrasonic impact grinding, an abrasive slurry flows through a gap between the workpiece and the vibrating tool ( Fig. 1 ). Material removal occurs when the abrasive particles, suspended in the slurry, are struck on the downstroke of the vibrating tool...
Abstract
The ultrasonic machining (USM) process consists of two methods, namely, ultrasonic impact grinding and rotary USM. This article lists the major ultrasonic components that are similar to both rotary USM and ultrasonic impact grinding. It also provides schematic representations of the components used in rotary USM and ultrasonic impact grinding. The article describes the operations of the components of the rotary ultrasonic machine and ultrasonic impact grinding machine. It discusses the applications of the rotary ultrasonic machine: drilling, milling, and surface grinding. The article concludes with information on machining characteristics of ultrasonic impact grinding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005619
EISBN: 978-1-62708-174-0
... that neither diffusion nor recrystallization could be responsible for the joint formation of UW after comparing low-frequency vibration welding with UW of aluminum and examining the copper and soft iron UW. A great degree of plastic deformation and metal flow occur across the interface, and flow lines...
Abstract
Ultrasonic welding (UW), as a solid-state joining process, uses an ultrasonic energy source and pressure to induce oscillating shears between the faying surfaces to produce metallurgical bonds between a wide range of metal sheets and wires. This article reviews the models of the ultrasonic welding with an emphasis on governing equations, material behavior, and heat generation of the process. It discusses the resulting factors, namely, vibration, friction, temperature, and plastic deformation as well as the bonding strength and its mechanism.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
..., heat treatment, geometry, surface roughness, residual stress, etc.), cavitation resistance depends largely on liquid property, flow speed, vibration characteristics, temperature, hydrostatic pressure, and so on. For certain materials, cavitation resistance is related to hardness, but for most metallic...
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001469
EISBN: 978-1-62708-173-3
... in the melted zone width that is due to lateral flow) increases linearly with time. When the vibratory motion is terminated, weld penetration continues to increase until the material solidifies, which represents phase IV. Fig. 8 Schematic of penetration-time graph showing the four phases of vibration...
Abstract
Polymeric materials that possess similar solubility parameters can be joined using a variety of polymer joining techniques. This article describes commonly available fusion-welding techniques such as joining methods, key joining parameters, and the application areas of each joining method. The techniques are hot-tool, hot-gas, extrusion, focused infrared, laser, friction, vibration, spin, ultrasonic, and electromagnetic welding techniques (resistance, induction, dielectric, and microwave welding). The article concludes with a discussion on welding evaluation methods.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006368
EISBN: 978-1-62708-192-4
... to an ultrasonic generator transferred the force to the workpiece. They showed that ultrasonic-induced vibrations have a positive impact on material flow during friction stir welding; the material refilling to the advancing side was enhanced, and fewer defects were observed in the welds. Therefore, the mechanical...
Abstract
Vibroacoustic analysis of mechanical systems has an important role in the engineering discipline. This can be used as a monitoring tool to obtain insights about the condition of a system, identify its probable defects, and determine the time window that the maintenance should happen. This article introduces the basics of signal processing in time, frequency, and time-frequency domains. It focuses on statistical analysis of the time-domain data. Various measures of data distribution and variability are pointed out. Important signal-processing functions in the frequency domain are presented and explained with examples. The article discusses and clarifies the benefits of time-frequency domain based on short-time Fourier transform with some practical applications. The article presents the most frequently used statistical functions. It concludes with information on some real-world applications of vibroacoustic analysis.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005216
EISBN: 978-1-62708-187-0
... induced by gas bubbles Forced flows due to applied electromagnetic fields, stirring, rotation, vibration, and so on Movement of small (equiaxed) grains or solid fragments that have heterogeneously nucleated in the melt, separated from a mold wall or free surface, or melted off dendrites. The solid...
Abstract
Macrosegregation refers to spatial compositional variations that occur in metal alloy castings and range in scale from several millimeters to centimeters or even meters. This article presents a derivative approach for understanding the mechanism of macrosegregation induced by flow of the liquid and movement of the solid with examples.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... FET field effect transistor FFT fast Fourier transform FIA flow injection analysis Fig. figure FM ferromagnet FMAR ferromagnetic antiresonance FOLZ first-order Laue zone FTS Fourier transform spectrometer FWHM full width at half...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003669
EISBN: 978-1-62708-182-5
..., and vibration dynamics. It concludes with a discussion on data correlations and the relationship between laboratory results and service expectations. cavitation erosion flow velocity impingement material degradation specimen preparation vibrating fluid EROSION, CAVITATION, AND IMPINGEMENT...
Abstract
Erosion, cavitation, and impingement are mechanically assisted forms of material degradation that often contribute to corrosive wear. This article identifies and describes several tests that are useful for ranking the service potential of candidate materials under such conditions. The tests, designed by ASTM as G32, G73, G75, and G76, define specimen preparation, test conditions, procedures, and data interpretation. The article examines the relative influence of various test parameters on the incubation and intensity of cavitation, including temperature, pressure, flow velocity, and vibration dynamics. It concludes with a discussion on data correlations and the relationship between laboratory results and service expectations.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005158
EISBN: 978-1-62708-186-3
..., it is desirable to attach the graphite electrode blank to the vibrating sonotrode and then feed it into the stationary forming tool. In either case, a gentle machining action is produced as the sonotrode vibrates the fine abrasive particles flowing throughout the machining gap and propels them against...
Abstract
The electrical discharge machining (EDM) process is used for machining dies because of its ability to machining difficult geometries or materials with poor machinability. This article provides a discussion on the fundamentals of electrical discharge erosion and the principles of EDM and orbital-movement EDM. It discusses various aspects of wire EDM in machining dies and provides an overview of the materials used in EDM electrodes. The article concludes with a discussion on electrochemical machining.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005355
EISBN: 978-1-62708-187-0
... sand, lost foam, investment casting, etc.) and on the type of metal being cast. In general, however, the castings must first be removed from the tree assembly, consisting of the casting with additional areas of metal (sprues and risers) used to direct metal flow during pouring. Cut-off saws are usually...
Abstract
After solidification and cooling, further processing and finishing of the castings are required. This article describes the general operations of shakeout, grinding, cleaning, and inspection of castings, with particular emphasis on automation technology. It illustrates the vertical core knockout machine and the A-frame core knockout machine and lists the advantages and disadvantages of these machines. The article describes the general factors in automated or manual gate removal process. It concludes with discussion on the various types of inspection, such as the liquid penetrant inspection, pressure testing, radiographic inspection, magnetic particle inspection, and ultrasonic inspection.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
... the type of cyclic stresses involved in the initiation and propagation of these fractures. Vibration fatigue cracks originate and propagate as a result of flow-induced vibration. This occurs where tubes are attached to drums, headers, walls, seals, or supports. Circumferential orientations are common...
Abstract
High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures. Contamination of combustion fuel in diesel engines can cause high-temperature corrosion. Gas turbine engines are affected by hot corrosion. Refractory-lined incinerators and alloy-lined incinerators are discussed. The article provides case studies for each component failure.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... of abrasives) Ineffective lubricants Failed filter seals Fretting induced by slight looseness in clamped joints subject to vibration Poor bearing or materials engineering design (redesign could reduce or eliminate problem) Water contamination High velocities or uneven flow distribution...
Abstract
The principal task of a failure analyst during a physical-cause investigation is to identify the sequence of events involved in the failure. Technical skills and tools are required for such identification, but the analyst also needs a mental organizational framework that helps evaluate the significance of observations. This article discusses the processes involved in the characterization and identification of damage and damage mechanisms. It describes the relationships between damage causes, mechanisms, and modes with examples. In addition, some of the more prevalent and encompassing characterization approaches and categorization methods of damage mechanism are also covered.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005607
EISBN: 978-1-62708-174-0
... kHz and higher removes surface contaminants, induces material flow, and permits a solid-state weld between the wire and metalized bond pad or leads on semiconductor packages. A combination of ultrasonic and thermocompression bonding, known as thermosonic bonding, is also a popular technique...
Abstract
Ultrasonic metal welding is a solid-state welding process that produces coalescence through the simultaneous application of localized high-frequency vibratory energy and moderate clamping forces. This article discusses the parameters to be considered when selecting a suitable welder for ultrasonic metal welding. It details the personnel requirements, advantages, limitations, and applications, namely, wire welds, spot welds, continuous seam welds, and microelectronic welds of ultrasonic metal welding.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003521
EISBN: 978-1-62708-180-1
... of lubricants. Seals of filters may have failed. Fretting induced by slight looseness in clamped joints subject to vibration Bearing or materials engineering design may reduce or eliminate problem. Water contamination High velocities or uneven flow distribution, cavitation Mild overheating...
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005251
EISBN: 978-1-62708-187-0
... (as in lost-foam casting) or by the use of an applied force (as in vacuum molding and magnetic molding described here). Unbonded (or no-bond) molding processes involve free-flowing mold particles and do not require binders, mulling equipment, or mold additives. This article describes the no-bond methods...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001732
EISBN: 978-1-62708-178-8
... and biological, and industrial importance. Fluorimetric measurements have been used in kinetic and enzymatic methods as well as flow systems. The emission of photons from molecules that have been excited electronically by absorption of photons in the ultraviolet/visible (UV/VIS) region is referred...
Abstract
This article provides an introduction to the molecular fluorescence spectroscopy, and discusses the theory of fluorescence and its application to chemical analysis. It provides information on fluorescence that occurs in organic compounds and inorganic atoms and molecules. The article describes the instruments used in the spectroscopy, namely, radiation sources, sample holders, wavelength selectors, detectors, computers, and ratiometric instruments. The practical considerations include solvent effects, corrected spectra, wavelength calibration, temperature, and scattered light. The article also discusses the uses of some special techniques used in molecular fluorescence spectroscopy.
1