Skip Nav Destination
Close Modal
Search Results for
flattening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 303 Search Results for
flattening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005103
EISBN: 978-1-62708-186-3
... correction. These processes include flattening, leveling, slitting, and cut-to-length. fabrication flat metal sheet flat metal strip flattening leveling slitting METAL PRODUCTION MILLS produce flat metal sheet and strip products into coil form, and the coiled product will be processed further...
Abstract
Metal production mills produce flat metal sheet and strip products into coil forms that are subjected to further fabrication for shape correction. This article provides a discussion on the principle of shape correction and describes the role of various fabrication processes in shape correction. These processes include flattening, leveling, slitting, and cut-to-length.
Image
Published: 30 September 2015
Fig. 24 (a) Idealized two-sphere model for densification by contact flattening. (b) Schematic diagram illustrating densification accompanied by Ostwald ripening. Grain shape accommodation can also occur when the liquid volume fraction is low.
More
Image
Published: 01 January 2006
Fig. 12 Bending mechanism during flattening and leveling showing an effect on plastic deformation
More
Image
Published: 01 January 2000
Fig. 22 Flattening and contact pressure distribution between a roller and flat plate
More
Image
Published: 01 January 2006
Fig. 14 Unconventional masonry tie constructed from flattened C-channel and bent to enter the brick core
More
Image
Published: 01 January 2005
Fig. 6 Flattened root and wear grooves in the direction of material flow in an H13 spur gear die. Courtesy of Dana Corp.
More
Image
Published: 01 January 2006
Fig. 10 Four-high flattener with backup rolls to support work rolls
More
Image
Published: 01 January 2006
Fig. 4 Dies and punches most commonly used in press-brake forming. (a) 90° V-bending. (b) Offset bending. (c) Radiused 90° bending. (d) Acute-angle bending. (e) Flattening for three types of hems. (f) Combination bending and flattening. (g) Gooseneck punch for multiple bends. (h) Special
More
Image
Published: 01 December 1998
Fig. 22 Dies and punches most commonly used in press-brake forming. (a) 90° V-bending. (b) Offset bending. (c) Radiused 90° bending. (d) Acute-angle bending. (e) Flattening, for three types of hems. (f) Combination bending and flattening. (g) Gooseneck punch for multiple bends. (h) Special
More
Image
Published: 01 January 2002
Fig. 15 Titanium heat-exchanger tube (ASTM B337, grade 2) that became embrittled and failed because of absorption of hydrogen and oxygen at elevated temperatures. (a) Section of the titanium tube that flattened as a result of test per ASTM B 337; the first crack was longitudinal along the top
More
Image
in Failure Analysis of Heat Exchangers
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 16 Titanium heat-exchanger tube (ASTM B337, grade 2) that became embrittled and failed because of absorption of hydrogen and oxygen at elevated temperatures. (a) Section of the titanium tube that flattened as a result of test in accordance with ASTM B 337; the first crack was longitudinal
More
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005177
EISBN: 978-1-62708-186-3
... Abstract This article discusses the principles of the press-brake forming process and its applicability with an example. It describes the types of press brakes and examines some considerations, which help in the selection of machine. The article provides information on flattening dies...
Abstract
This article discusses the principles of the press-brake forming process and its applicability with an example. It describes the types of press brakes and examines some considerations, which help in the selection of machine. The article provides information on flattening dies, gooseneck punches, wiping dies, channel dies, arbor-type punches, box-forming dies, curling dies, beading dies, and cam-driven dies, with illustrations. It discusses the tool material selection for various operations. The article explains the procedures used for producing different shapes, including simple boxlike parts, panels, flanged parts, architectural columns, fully closed parts, and semicircular parts. It examines the effect of work metal variables on results in press-brake operations. The article also reviews stock tolerances, design, and condition of machines and tools, which help in obtaining good dimensional accuracy.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006370
EISBN: 978-1-62708-192-4
... Abstract This article describes friction force as a function of normal force in dry forming. It focuses on metal forming operations usually classified as cold working and hot working based on metallurgical considerations. The article discusses surface flattening and roughening of workpiece...
Abstract
This article describes friction force as a function of normal force in dry forming. It focuses on metal forming operations usually classified as cold working and hot working based on metallurgical considerations. The article discusses surface flattening and roughening of workpiece asperities in metal forming. It presents advanced tribology models and results for friction in isothermal forging operations in which the tooling is maintained at a temperature close to that of the workpiece. The article provides information on heat transfer models. It discusses the effect of wear in manufacturing processes. The article concludes with information on the main categories of tool and die materials used for a variety of manufacturing application.
Image
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 132 Postincident photograph of reboiler B shell. The pressure forces during the event flattened the cylindrical steel reboiler shell.
More
Image
Published: 01 January 2001
Fig. 2 FiberSIM model of woven ply draping into fairing tool after applied ply cuts. The shape on the right is the predicted flattened ply shape to be cut. Courtesy of VISTAGY Inc.
More
Image
Published: 01 January 1989
Fig. 12 Typical horizontal single-face flat lap lapping machine with three conditioning rings. Ring position flattening is achieved by using gravity pressure. Courtesy of P.R. Hoffman Machine Products
More
Image
Published: 01 January 1989
Fig. 5 Schematic of a three-rib thread grinding wheel. A, roughing rib; B, intermediate rib; C, finishing rib. The flattened area (D) is optional and can be used to finish grind the crest of the thread.
More