1-20 of 324 Search Results for

flame spray coating

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2006
Fig. 9 Typical imperfections in flame/arc spray coatings. (a) Thin area in coating. (b) Imbedded blasting grit. (c) Void extending to substrate More
Image
Published: 01 January 2006
Fig. 7 Micrograph through a flame-sprayed aluminum coating showing oxide layers within the coating (thin dark lines) More
Image
Published: 01 January 2006
Fig. 8 Electron microprobe x-ray scans of flame-sprayed aluminum coating cross sections after full immersion in filtered seawater for 15 months More
Image
Published: 01 August 2013
Fig. 6 Typical thermal spray microstructures, showing general coating structures. (a) NiWCrFeBSiC/Colmonoy 72 spray and fused, flame spray coating. (b) Zirconia, plasma sprayed. (c) Polymer, flame sprayed. Courtesy of Wall Colmonoy, Plasma Technik, and UTP, respectively More
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001282
EISBN: 978-1-62708-170-2
... Abstract This article introduces thermal spray coatings and describes the various types of coating processes and coating devices, including the flame spray, electric-arc spray, plasma spray, transferred plasma arc, high-velocity oxyfuel, and detonation gun. It provides information...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004107
EISBN: 978-1-62708-184-9
... included aluminum and zinc wire-flame-spray coated steel specimens with coating thicknesses of 0.08, 0.15, 0.23, 0.30, and 0.40 mm (3, 6, 9, 12, and 15 mils). Field exposures were conducted at a variety of atmospheric exposure sites and two seawater immersion sites. The study was scheduled to last 12 years...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001462
EISBN: 978-1-62708-173-3
... processes and the specific flame and arc spray processes used to preserve large steel components and structures. It describes the TSC selection guide and an industrial process procedure guide for applying aluminum and zinc TSCs onto steel. aluminum coatings flame and arc spray process steel thermal...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001280
EISBN: 978-1-62708-170-2
... of various coating materials, namely, silicate glasses, oxides, carbides, silicides, and cermets. It reviews ceramic coating methods: brushing, spraying, dipping, flow coating, combustion flame spraying, plasma-arc flame spraying, detonation gun spraying, pack cementation, fluidized-bed deposition, vapor...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003832
EISBN: 978-1-62708-183-2
... processes such as HVOF is believed to offer the potential to fabricate extremely dense coatings with high corrosion resistance. Aluminum Coatings and Zinc Coatings The TSA and TSZ coatings are usually sprayed onto large structures using flame and electric arc-based processes, and with the coating...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005718
EISBN: 978-1-62708-171-9
... in this Division of the Volume introduce coatings, thermal spray processes, and equipment. The major processes that constitute the technology—flame, electric arc, plasma arc spray, and cold spray—are presented together with their processing characteristics. Coatings are presented with respect to structure...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005738
EISBN: 978-1-62708-171-9
... Abstract This article provides an overview of key abradable thermal spray coating systems based on predominant function and key design criteria. It describes two families of coatings which have evolved for use at higher temperature: flame (combustion)-sprayed abradable powders and atmospheric...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006419
EISBN: 978-1-62708-192-4
... for thermal spray are explored in more detail and categorized according to the heat input below. The main focus is production of coatings for wear and friction. Additional processes and applications can be found in Ref 2 and 11 . Flame Spraying (FS) The flame-spraying process is based on oxyfuel...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003690
EISBN: 978-1-62708-182-5
... coatings include portability, ability to seal or topcoat, abrasion and erosion resistance, and lack of curing requirements. Thermal Spray Processes Thermal spray (TS) is a generic term used to describe a group of processes, including flame spraying, plasma spraying, arc metallization, detonation gun...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005706
EISBN: 978-1-62708-171-9
... Abstract Thermal spray is a generic term for a group of coating processes used to apply metallic, ceramic, cermet, and some polymeric coatings for a broad range of applications. This article provides a brief description of commercially important thermal spray processes, namely, powder-fed flame...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005725
EISBN: 978-1-62708-171-9
... work. Bond coat thicknesses are typically between 75 and 125 μm (0.003 and 0.005 in.). Bond Coat Materials Bond coats can be applied by wire- and powder-flame spray, plasma arc spray, high-velocity oxyfuel (HVOF), and electric arc spray. Most materials are available in the form of powders...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005713
EISBN: 978-1-62708-171-9
... densities and bond strengths compared to conventional flame spray. The HVOF processes and coatings have made significant inroads in the D-Gun and plasma coating markets. The cold spray process was developed in the mid-1980s by A. Papyrin and colleagues in Russia (U.S. Patent No. 5,302,414, 1994...
Image
Published: 01 January 2006
Fig. 3 Comparison of scribed, sealed, and painted thermal spray coatings on steel substrates to a scribed painted steel panel after 42 months of severe marine atmospheric exposure. (a) Flame-sprayed aluminum on steel, sealed/painted. (b) Painted steel panel (one coat MIL P24441 F150 primer More
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005709
EISBN: 978-1-62708-171-9
... redundancy of an overlay as required with alternative mesh systems. Methods used to thermal spray zinc onto concrete include oxyacetylene wire flame spraying, twin-wire arc spray, and single-wire arc plasma spraying. These methods may form coatings that display different properties and process economics...
Image
Published: 31 December 2017
Fig. 16 Microstructures of thermally sprayed metal-matrix composites (MMCs). (a) High-velocity-oxyfuel-sprayed MMC coating consisting of a ledeburitic cold work tool steel matrix and 10 vol% TiC. Source: Ref 70 . (b) Flame-sprayed nickel-base coating with addition of WC More
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005747
EISBN: 978-1-62708-171-9
... spraying; and three each for flame spraying and air plasma spraying. AWS C2.18-93R, “Guide for the Protection of Steel with Thermal Sprayed Coatings of Aluminum and Zinc and Their Alloys and Composites” (40 pages). Authoritative guide to select, plan, and control thermal spray coatings for preservation...