Skip Nav Destination
Close Modal
Search Results for
flame spray coating
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 324 Search Results for
flame spray coating
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2006
Fig. 9 Typical imperfections in flame/arc spray coatings. (a) Thin area in coating. (b) Imbedded blasting grit. (c) Void extending to substrate
More
Image
Published: 01 January 2006
Fig. 7 Micrograph through a flame-sprayed aluminum coating showing oxide layers within the coating (thin dark lines)
More
Image
Published: 01 January 2006
Fig. 8 Electron microprobe x-ray scans of flame-sprayed aluminum coating cross sections after full immersion in filtered seawater for 15 months
More
Image
Published: 01 August 2013
Fig. 6 Typical thermal spray microstructures, showing general coating structures. (a) NiWCrFeBSiC/Colmonoy 72 spray and fused, flame spray coating. (b) Zirconia, plasma sprayed. (c) Polymer, flame sprayed. Courtesy of Wall Colmonoy, Plasma Technik, and UTP, respectively
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001282
EISBN: 978-1-62708-170-2
... Abstract This article introduces thermal spray coatings and describes the various types of coating processes and coating devices, including the flame spray, electric-arc spray, plasma spray, transferred plasma arc, high-velocity oxyfuel, and detonation gun. It provides information...
Abstract
This article introduces thermal spray coatings and describes the various types of coating processes and coating devices, including the flame spray, electric-arc spray, plasma spray, transferred plasma arc, high-velocity oxyfuel, and detonation gun. It provides information on the surface preparation methods and finishing treatments of coated parts. The article also explains the tests to evaluate the coating quality and the effects of coating structures and mechanical properties on coated parts. It concludes with a discussion on the uses of thermal spray coatings.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004107
EISBN: 978-1-62708-184-9
... included aluminum and zinc wire-flame-spray coated steel specimens with coating thicknesses of 0.08, 0.15, 0.23, 0.30, and 0.40 mm (3, 6, 9, 12, and 15 mils). Field exposures were conducted at a variety of atmospheric exposure sites and two seawater immersion sites. The study was scheduled to last 12 years...
Abstract
A sacrificial coating applied to a steel substrate can add 20 years or more of life to the substrate, depending on its thickness and composition. Different techniques to apply sacrificial coatings offer various characteristics that contribute to corrosion resistance. This article discusses thermal spray, hotdipping, and electroplating processes used to apply coatings in steel structures. It describes the corrosion attributes of the resulting coatings and discusses the methods of protecting steel from corrosion using aluminum and zinc coatings.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001462
EISBN: 978-1-62708-173-3
... processes and the specific flame and arc spray processes used to preserve large steel components and structures. It describes the TSC selection guide and an industrial process procedure guide for applying aluminum and zinc TSCs onto steel. aluminum coatings flame and arc spray process steel thermal...
Abstract
Thermal spray coatings (TSCs) are surface coatings engineered to provide wear-, erosion-, abrasion-, and corrosion-resistant coatings for original equipment manufacture and for the repair and upgrading of in-service equipment. This article presents an overview of five thermal spray processes and the specific flame and arc spray processes used to preserve large steel components and structures. It describes the TSC selection guide and an industrial process procedure guide for applying aluminum and zinc TSCs onto steel.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001280
EISBN: 978-1-62708-170-2
... of various coating materials, namely, silicate glasses, oxides, carbides, silicides, and cermets. It reviews ceramic coating methods: brushing, spraying, dipping, flow coating, combustion flame spraying, plasma-arc flame spraying, detonation gun spraying, pack cementation, fluidized-bed deposition, vapor...
Abstract
Ceramic coatings are applied to metals to protect them against oxidation and corrosion at room temperature and at elevated temperatures. This article provides a detailed account of the factors to be considered when selecting a ceramic coating and describes the characteristics of various coating materials, namely, silicate glasses, oxides, carbides, silicides, and cermets. It reviews ceramic coating methods: brushing, spraying, dipping, flow coating, combustion flame spraying, plasma-arc flame spraying, detonation gun spraying, pack cementation, fluidized-bed deposition, vapor streaming, troweling, and electrophoresis. The article also includes information on the evaluation of the quality of ceramic coatings.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003832
EISBN: 978-1-62708-183-2
... processes such as HVOF is believed to offer the potential to fabricate extremely dense coatings with high corrosion resistance. Aluminum Coatings and Zinc Coatings The TSA and TSZ coatings are usually sprayed onto large structures using flame and electric arc-based processes, and with the coating...
Abstract
This article provides a general technical description of thermal spray coatings used for corrosion protection in atmospheric and aqueous environments. It further discusses two basic coating approaches of corrosion protection, namely, the sacrificial coating of thermal spray aluminum (TSA) and thermal spray zinc (TSZ), and the barrier-type coating of corrosion-resistant materials. The emphasis is on sacrificial coatings. The article describes the steps involved in the application of TSA and TSZ: surface preparation, coating deposition, and postspray treatment. It discusses their field exposure tests and application history. The article also contains helpful information on the dense barrier coatings by high-velocity spraying processes along with their corrosion performance.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005718
EISBN: 978-1-62708-171-9
... in this Division of the Volume introduce coatings, thermal spray processes, and equipment. The major processes that constitute the technology—flame, electric arc, plasma arc spray, and cold spray—are presented together with their processing characteristics. Coatings are presented with respect to structure...
Abstract
This article presents the major thermal spray processes and their subsets, presenting each of the commercially significant processes together with some of their important variations. Each process is presented along with the attributes that influence coating structure and performance. The article summarizes the essential equipment components and necessary controls. The various thermal spray processes are conventional flame spray, detonation gun, high-velocity oxyfuel spray, electric arc spray, and plasma arc spray. Other processes, such as cold spray, underwater plasma arc spray, and extended-arc and other high-energy plasma arc spray, are also considered.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005738
EISBN: 978-1-62708-171-9
... Abstract This article provides an overview of key abradable thermal spray coating systems based on predominant function and key design criteria. It describes two families of coatings which have evolved for use at higher temperature: flame (combustion)-sprayed abradable powders and atmospheric...
Abstract
This article provides an overview of key abradable thermal spray coating systems based on predominant function and key design criteria. It describes two families of coatings which have evolved for use at higher temperature: flame (combustion)-sprayed abradable powders and atmospheric plasma-sprayed abradable powders. Three classic examples of flame spray abradables are nickel-graphite powders, NiCrAl-bentonite powders, and NiCrFeAl-boron nitride powders. The article provides information on various abradable coating testing procedures, namely, abradable incursion testing; aging, corrosion, thermal cycle and thermal shock testing; hardness testing; and erosion resistance testing.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006419
EISBN: 978-1-62708-192-4
... for thermal spray are explored in more detail and categorized according to the heat input below. The main focus is production of coatings for wear and friction. Additional processes and applications can be found in Ref 2 and 11 . Flame Spraying (FS) The flame-spraying process is based on oxyfuel...
Abstract
This article describes the technology of thermal spraying with regard to tribological applications. It introduces the basics of tribology and presents the fundamentals of thermal spraying and the relevant process variants and suitable materials. Specific application areas are described regarding the different forms of elementary movement in the corresponding tribological system. The article provides an overview of thermal spray coatings and possible uses for friction and wear control, besides operating as corrosion protection and a thermal barrier. The article provides examples that illustrate how tribological performance can be improved.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003690
EISBN: 978-1-62708-182-5
... coatings include portability, ability to seal or topcoat, abrasion and erosion resistance, and lack of curing requirements. Thermal Spray Processes Thermal spray (TS) is a generic term used to describe a group of processes, including flame spraying, plasma spraying, arc metallization, detonation gun...
Abstract
This article provides an overview of thermal spray processes. It describes the microstructural character of thermal spray coatings as well as the criteria for coating selection. The optimization, parameterization, and surface preparation and treatments for the thermal spray coatings are also discussed. The article illustrates the adhesion of polymer coatings and the thermal spray process used to remove lead-base paint. It provides information on the specifications, standardization, and guidelines for thermal spray applicators.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005706
EISBN: 978-1-62708-171-9
... Abstract Thermal spray is a generic term for a group of coating processes used to apply metallic, ceramic, cermet, and some polymeric coatings for a broad range of applications. This article provides a brief description of commercially important thermal spray processes, namely, powder-fed flame...
Abstract
Thermal spray is a generic term for a group of coating processes used to apply metallic, ceramic, cermet, and some polymeric coatings for a broad range of applications. This article provides a brief description of commercially important thermal spray processes, namely, powder-fed flame spray, wire- or rod-fed flame spray, electric arc spray, plasma arc spray, vacuum plasma spray, high-velocity oxyfuel spray, detonation gun deposition, and cold spray, and their advantages. It provides details on the microstructural characteristics of thermal spray coatings. The article also presents information on a wide variety of materials that can be thermal sprayed, such as metals, ceramics, intermetallics, composites, cermets, polymers, and functionally gradient materials. Tables are included, which list the thermal spray processes and coating properties of importance for various industrial applications.
Book Chapter
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005725
EISBN: 978-1-62708-171-9
... work. Bond coat thicknesses are typically between 75 and 125 μm (0.003 and 0.005 in.). Bond Coat Materials Bond coats can be applied by wire- and powder-flame spray, plasma arc spray, high-velocity oxyfuel (HVOF), and electric arc spray. Most materials are available in the form of powders...
Abstract
This article begins with a description of the advantages and disadvantages of thermal spraying. It provides a discussion on the importance of substrate processing prior to coating and the role of undercutting in repair. The article reviews the steps for substrate preparation, namely, cleaning, roughening, masking, and preheating. Information on the equipment and process variables of dry abrasive grit blasting are also provided. The article describes the roles of spray stream and the spray pattern for all thermal spray processes. It discusses the defects arising from poor temperature control and from the variables influencing the manipulation of the spray torch. The article concludes with helpful information on calculating the process efficiency of thermal spraying.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005713
EISBN: 978-1-62708-171-9
... densities and bond strengths compared to conventional flame spray. The HVOF processes and coatings have made significant inroads in the D-Gun and plasma coating markets. The cold spray process was developed in the mid-1980s by A. Papyrin and colleagues in Russia (U.S. Patent No. 5,302,414, 1994...
Abstract
Significant expansion of thermal spray technology occurred with the invention of plasma spray, detonation gun, and high-velocity oxyfuel (HVOF) deposition technologies. This article provides a brief history of the major initiating inventions/developments of thermal spray processes. It provides information on feedstock materials developed for specific thermal spray processes.
Image
Published: 01 January 2006
Fig. 3 Comparison of scribed, sealed, and painted thermal spray coatings on steel substrates to a scribed painted steel panel after 42 months of severe marine atmospheric exposure. (a) Flame-sprayed aluminum on steel, sealed/painted. (b) Painted steel panel (one coat MIL P24441 F150 primer
More
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005709
EISBN: 978-1-62708-171-9
... redundancy of an overlay as required with alternative mesh systems. Methods used to thermal spray zinc onto concrete include oxyacetylene wire flame spraying, twin-wire arc spray, and single-wire arc plasma spraying. These methods may form coatings that display different properties and process economics...
Abstract
Corrosion of marine- and land-based infrastructure is of major concern and its control forms an important objective. Thermal spray coatings (TSCs) are widely used for corrosion protection. This article focuses on two types of TSCs: cathodic or noble coatings and anodic or sacrificial coatings. It describes the factors affecting the performance of sacrificial TSCs in atmospheric and immersion environments. The article provides information on the applications of sacrificial TSCs, non-sacrificial coatings, and sealants/top coats, and exemplifies the use of sacrificial TSCs on structures for corrosion protection.
Image
in Carbide- and Boride-Based Thick Coatings for Abrasive Wear-Protection Applications
> Friction, Lubrication, and Wear Technology
Published: 31 December 2017
Fig. 16 Microstructures of thermally sprayed metal-matrix composites (MMCs). (a) High-velocity-oxyfuel-sprayed MMC coating consisting of a ledeburitic cold work tool steel matrix and 10 vol% TiC. Source: Ref 70 . (b) Flame-sprayed nickel-base coating with addition of WC
More
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005747
EISBN: 978-1-62708-171-9
... spraying; and three each for flame spraying and air plasma spraying. AWS C2.18-93R, “Guide for the Protection of Steel with Thermal Sprayed Coatings of Aluminum and Zinc and Their Alloys and Composites” (40 pages). Authoritative guide to select, plan, and control thermal spray coatings for preservation...
Abstract
This article is a brief guide to information sources on thermal spray technology. The sources provided by ASM International and the Thermal Spray Society (TSS) include magazines and journals as well as reference books, including the ASM Handbook series, conference proceedings, newsletters, education courses, and videos. The article provides information on the specifications, standards, and quality control for coatings.
1