Skip Nav Destination
Close Modal
Search Results for
flame hardening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 400 Search Results for
flame hardening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005807
EISBN: 978-1-62708-165-8
... Abstract Flame hardening is a heat treating process in which a thin surface shell of a steel part is heated rapidly to a temperature above the critical temperatures of the steel. The versatility of flame-hardening equipment and the wide range of heating conditions obtainable with gas burners...
Abstract
Flame hardening is a heat treating process in which a thin surface shell of a steel part is heated rapidly to a temperature above the critical temperatures of the steel. The versatility of flame-hardening equipment and the wide range of heating conditions obtainable with gas burners, often permit flame hardening to be done by a variety of methods. These include the spot or stationary method, progressive method, spinning method, and the combination progressive-spinning method. This article provides information on fuel gases used in flame hardening and their selection criteria for specific applications. It also discusses operating procedures and control requirements for flame hardening of steel.
Image
Published: 01 January 1994
Image
Published: 01 August 2013
Fig. 1 Spot (stationary) and progressive methods of flame hardening. (a) Spot (stationary) method of flame hardening a rocker arm and the internal lobes of a cam; quench not shown. (b) Progressive hardening method
More
Image
Published: 01 August 2013
Fig. 2 Spinning methods of flame hardening. In methods shown at left and at center, the part rotates. In method at right, the flame head rotates. Quench not shown
More
Image
Published: 01 August 2013
Image
Published: 01 August 2013
Fig. 8 Typical flame-hardening installations using oxy-fuel gas mixtures. (a) Installation for high production of similar parts: hardening the 54 mm (2 1 8 in.) bores of hubs to a depth of approximately 3.2 mm ( 1 8 in.). Machine has a standard, retractable spindle adapted
More
Image
Published: 01 August 2013
Fig. 10 Setups for flame hardening gears, idler wheels, and sprockets. (a) Radiant burners. (b) High-velocity convection burners. Wide-face parts can be heated with double or staggered rings of burners.
More
Image
Published: 01 August 2013
Fig. 17 Distribution of dimensional change as a result of flame hardening. (a) Change in pitch diameter of converter gear hubs made of 1052 steel. Gear teeth on inside diameter were heated for a total of 9.5 s, before being quenched in oil to provide a depth of hardness of 0.9 mm (0.035
More
Image
Published: 01 December 1998
Fig. 5 Spot (stationary) and progressive methods of flame hardening. (a) Spot (stationary) method of flame hardening a rocker arm and the internal lobes of a cam; quench not shown. (b) Progressive hardening method
More
Image
Published: 01 December 1998
Fig. 6 Spinning methods of flame hardening. In methods shown at left and at center, the part rotates. In method at right, the flame head rotates. Quench not shown
More
Image
Published: 01 December 1998
Image
Published: 01 October 2014
Image
Published: 31 August 2017
Image
Published: 01 January 2000
Fig. 18 Vickers traverse showing the hardness profile results from a flame-hardened SAE 8660 gear using a fully automated microindentation hardness-testing system
More
Image
Published: 01 August 2013
Fig. 6 Representative flame head designs. (a) Gear tooth-hardening flame head. (b) Sheave-hardening flame head. Source: Ref 3
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003200
EISBN: 978-1-62708-199-3
... of frequency, power, duration of heating, and coil design for induction hardening. The article also discusses the scope, application, methods, and operation of flame hardening. electron-beam heat treating flame hardening induction hardening induction tempering laser surface hardening Induction...
Abstract
This article discusses the fundamentals and applications of localized heat treating methods: induction hardening and tempering, laser surface transformation hardening, and electron-beam heat treatment. The article provides information about equipment and describes the selection of frequency, power, duration of heating, and coil design for induction hardening. The article also discusses the scope, application, methods, and operation of flame hardening.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005951
EISBN: 978-1-62708-168-9
... Abstract Case hardening involves various methods and each method has unique characteristics and different considerations in the selection of steels This article reviews the various grades of carburizing steels, carbonitriding steels, nitriding steels, and steels for induction, or flame...
Abstract
Case hardening involves various methods and each method has unique characteristics and different considerations in the selection of steels This article reviews the various grades of carburizing steels, carbonitriding steels, nitriding steels, and steels for induction, or flame hardening. This review is based on their process characteristics, compositions, applications, and mechanical properties, which help in selecting steels for case hardening.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005942
EISBN: 978-1-62708-168-9
... of the graphite achieved during casting. This article provides a detailed account of classes of gray iron, and heat treating methods of gray irons with examples. These methods include stress relieving, annealing, normalizing, transformation hardening, austenitizing, quenching, austempering, martempering, flame...
Abstract
Gray irons are a group of cast irons that form flake graphite during solidification, in contrast to the spheroidal graphite morphology of ductile irons. The heat treatment of gray irons can considerably alter the matrix microstructure with little or no effect on the size and shape of the graphite achieved during casting. This article provides a detailed account of classes of gray iron, and heat treating methods of gray irons with examples. These methods include stress relieving, annealing, normalizing, transformation hardening, austenitizing, quenching, austempering, martempering, flame hardening, induction hardening, and nitriding.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed. acid cleaning acid descaling alkaline cleaning boriding buffing carburizing electrocleaning...
Abstract
Passivation; pickling, that is, acid descaling; electropolishing; and mechanical cleaning are important surface treatments for the successful performance of stainless steel used for piping, pressure vessels, tanks, and machined parts in a wide variety of applications. This article provides an overview of the various types of stainless steels and describes the commonly used cleaning methods, namely, alkaline cleaning, emulsion cleaning, solvent cleaning, vapor degreasing, ultrasonic cleaning, and acid cleaning. Finishing operations of stainless steels, such as grinding, polishing, and buffing, are reviewed. The article also explains the procedures of electrocleaning, electropolishing, electroplating, painting, surface blackening, coloring, terne coatings, and thermal spraying. It includes useful information on the surface modification of stainless steels, namely, ion implantation and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005148
EISBN: 978-1-62708-186-3
..., and in a die for a 305 mm (12 in.) part, it may amount to nearly one-half the total die cost, even when the tool consists of a tool steel insert in a flame-hardened alloy cast iron die. Die Performance The performance of a drawing die is determined by the total amount of wear (abrasive and adhesive...
Abstract
The selection of material for a drawing die is aimed at the production of the desired quality and quantity of parts with the least possible tooling cost per part. This article discusses the performance of a drawing die. It contains tables that list the lubricants used for deep drawing, and the typical materials for punches and blank holders. The article describes the typical causes of wear (galling) of deep-drawing tooling. It analyzes the selection of a harder and more wear-resistant material, the application of a surface coating such as chromium plating to the finished tools, and surface treatments such as carburizing or carbonitriding for low-alloy steels or nitriding or physical vapor deposition coating for tool steels.
1