1-20 of 115 Search Results for

flake graphite

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005213
EISBN: 978-1-62708-187-0
... Abstract Cast iron exhibits a considerable amount of eutectic in the solid state. This article discusses the structure of liquid iron-carbon alloys to understand the mechanism of the solidification of cast iron. It illustrates nucleation of the austenite-flake graphite eutectic, austenite...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003109
EISBN: 978-1-62708-199-3
... Table 1 Comparison of properties of cerium-treated CG iron with flake graphite (FG) iron of the same chemical composition, high-strength pearlitic FG iron, and ferritic spheroidal graphite (SG) iron in the as-cast condition Property High-strength pearlitic FG iron (100% pearlite, 100...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005325
EISBN: 978-1-62708-187-0
...) fall between those of gray flake graphite irons (FG) and ductile irons (SG). This position gives CG a desirable combination of properties for certain applications of high interest. Compact graphite iron has higher strength, stiffness, and fatigue strength than FG with better thermal conductivity and...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003090
EISBN: 978-1-62708-199-3
... pearlitic microstructure; the machine housing has a ferrite plus pearlite matrix with graphite flakes; and the jaw crusher microstructure contains martensite and cementite. cast irons material selection mechanical properties microstructure steels THE PROPERTIES of irons and steels are linked...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005328
EISBN: 978-1-62708-187-0
... requiring corrosion resistance or strength and oxidation resistance in high-temperature service. They are commonly produced in both flake graphite and nodular graphite versions. Those alloys used in applications requiring corrosion resistance are the nickel-alloyed (13 to 36% Ni) gray and ductile irons...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005322
EISBN: 978-1-62708-187-0
... shows the transition from a completely pearlitic zone to a zone where cementite surrounds the pearlite colonies. Contributed to ASM Online Micrograph Center by L.E. Samuels Gray iron is also called flake or lamellar graphite cast iron due to the shape of the graphite present in these alloys...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003174
EISBN: 978-1-62708-199-3
... irons are produced with 3.0 to 3.5% carbon levels and 1.8 to 2.4% silicon levels. Gray irons are characterized by the presence of most of the contained carbon as flakes of free graphite in the as-cast iron. Gray iron has the lowest casting temperature, the least shrinkage, and the best castability of...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003106
EISBN: 978-1-62708-199-3
... graphite phase. Gray iron has flake-shaped graphite, ductile iron has nodular or spherically shaped graphite, compacted graphite iron (also called vermicular graphite iron) is intermediate between these two, and malleable iron has irregularly shaped globular or “popcorn-shaped” graphite that is formed...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003246
EISBN: 978-1-62708-199-3
... steels are deliberately designed to produce a small amount of graphite in the structure to enhance machinability ( Fig. 4 ). The graphite in cast irons is produced in a variety of forms, such as flake, compacted, and spheroidal. Gray cast iron containing flake graphite is quite brittle; however, if the...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003810
EISBN: 978-1-62708-183-2
... the amount of massive carbides present are critical to mechanical properties, these structural variables do not have a strong effect on corrosion resistance. Flake graphite structures may trap corrosion products and retard corrosion slightly in some applications. Under unusual circumstances, graphite...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005294
EISBN: 978-1-62708-187-0
... small portion of Fe 2 O 3 In as-cast gray irons, most of the contained carbon is present as flakes of free graphite. Because carbon is dissolved in the molten iron in amounts of approximately 2.8 to 4.0%, gray iron has the lowest casting temperature, the least shrinkage, and the best...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005326
EISBN: 978-1-62708-187-0
... shown in Fig. 1 . A satisfactory structure consists of temper carbon in a matrix of ferrite. There should be no flake graphite and essentially no combined carbon in ferritic malleable iron. Pearlitic and martensitic malleable irons contain a controlled quantity of combined carbon, which, depending on...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004032
EISBN: 978-1-62708-185-6
... size of the graphite particles are still not well known. It is claimed that semicolloidal graphite is better than colloidal graphite. Flake graphite causes less oxide penetration and thus cleaner forging. It was shown ( Ref 5 ) that there is not much difference with the friction due to the sizes of the...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003108
EISBN: 978-1-62708-199-3
... structure at elevated temperature, thus promoting better retention of strength at temperatures up to about 650 °C (1200 °F) in unalloyed or low-alloy ductile irons. Conversion of graphite from flakes to nodules, which is caused by addition of magnesium (or magnesium and cerium) to the molten iron...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003110
EISBN: 978-1-62708-199-3
... shaped graphite nodules instead of flakes, as in gray iron, or small graphite spherulites, as in ductile iron. Malleable iron is produced by first casting the iron as a white iron and then heat treating the white cast iron to convert the iron carbide into the irregularly shaped nodules of graphite. This...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003201
EISBN: 978-1-62708-199-3
... nodular form (ductile iron) or flake form (gray iron). See the Section “Cast Irons” in this Handbook for compositions of these high-alloy irons that contain from 18 to 37% Ni. Conventional hardness measurements on cast irons always indicate lower values than the true hardness of the metal...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005242
EISBN: 978-1-62708-187-0
... molds, namely, ceramic shells and rammed graphite, for casting reactive metals such as titanium or zirconium. ceramic shells coremaking green sand operations titanium zirconium clay resin-bonded sand systems no-bake binder systems heat-cured binder systems cold box binder systems rammed...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003107
EISBN: 978-1-62708-199-3
... bars GRAY IRON refers to a broad class of ferrous casting alloys normally characterized by a microstructure of flake graphite in a ferrous matrix. Gray irons are in essence iron-carbon-silicon alloys that usually contain 2.5 to 4% C, 1 to 3% Si, and additions of manganese, depending on the desired...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000602
EISBN: 978-1-62708-181-8
... through the casting in a region containing type C, size 3 graphite flakes. Cause of failure was traced to a crack that initiated at one of these flakes. Inset: broken grinder in as-received condition. 1.5× (C.-A. Baer, California Polytechnic State University) Effect of graphite morphology on...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005323
EISBN: 978-1-62708-187-0
... eutectic temperature. In gray cast iron, the carbon that exceeds the solubility in austenite precipitates as flake graphite. Gray irons usually contain 2.5 to 4% C, 1 to 3% Si, and additions of manganese, depending on the desired microstructure (as low as 0.1% Mn in ferritic gray irons and as high as 1.2...