Skip Nav Destination
Close Modal
Search Results for
fireside corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 25
Search Results for fireside corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004156
EISBN: 978-1-62708-184-9
... Abstract The presence of certain impurities in coal and oil is responsible for the majority of fireside corrosion experienced in utility boilers. In coal, the primary impurities are sulfur, alkali metals, and chlorine. The most detrimental impurities in fuel oil are vanadium, sodium, sulfur...
Abstract
The presence of certain impurities in coal and oil is responsible for the majority of fireside corrosion experienced in utility boilers. In coal, the primary impurities are sulfur, alkali metals, and chlorine. The most detrimental impurities in fuel oil are vanadium, sodium, sulfur, and chlorine. This article describes the two categories of fireside corrosion based on location in the furnace: waterwall corrosion in the lower furnace and fuel ash corrosion of superheaters and reheaters in the upper furnace. It discusses prevention methods, including changes to operating parameters and application of protective cladding or coatings.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
... fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures...
Abstract
High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures. Contamination of combustion fuel in diesel engines can cause high-temperature corrosion. Gas turbine engines are affected by hot corrosion. Refractory-lined incinerators and alloy-lined incinerators are discussed. The article provides case studies for each component failure.
Image
in Corrosion in Petroleum Refining and Petrochemical Operations
> Corrosion: Environments and Industries
Published: 01 January 2006
Fig. 23 Corrosion rate in a combustion environment versus time as monitored using electrochemical methods is plotted with a key process variable. Fireside corrosion of boiler tubes in coal-fired utilities and waste incineration plants is an expensive and difficult problem to deal with. Special
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... Underdeposit corrosion—phosphate corrosion Acid cleaning corrosion Internal deposit/corrosion product buildup Fireside wastage Fireside oxidation Fireside corrosion of superheater and reheater tubing Fly-ash corrosion Soot-blower corrosion Coal-particle corrosion Steam...
Abstract
The principal task of a failure analyst during a physical-cause investigation is to identify the sequence of events involved in the failure. Technical skills and tools are required for such identification, but the analyst also needs a mental organizational framework that helps evaluate the significance of observations. This article discusses the processes involved in the characterization and identification of damage and damage mechanisms. It describes the relationships between damage causes, mechanisms, and modes with examples. In addition, some of the more prevalent and encompassing characterization approaches and categorization methods of damage mechanism are also covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003521
EISBN: 978-1-62708-180-1
... cleaning corrosion Internal deposit/corrosion product buildup Fireside wastage Fireside oxidation Fireside corrosion of superheater and reheater tubing Fly ash corrosion Sootblower corrosion Coal particle corrosion Steam impingement Fireside corrosion of waterwall tubing Low...
Abstract
This article describes the two critical goals in a failure investigation: damage mechanisms and damage modes. It explains the determination of primary and secondary damage mechanisms and discusses the methodology used to classify the damage mechanisms.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004157
EISBN: 978-1-62708-184-9
... of Fireside Corrosion Problems in Refuse-Fired Boilers,” Paper No. 200, Corrosion 93, NACE International , 1993 3. Krause H.H. and Wright I.G. , “Boiler Tube Failures in Municipal Waste-To-Energy Plants: Case Histories,” Paper No. 561, Corrosion 95, NACE International , 1995 4...
Abstract
This article describes the corrosion modes in a waste-to-energy boiler. It discusses the corrosion protection and alloy performance with an emphasis on two main areas of the boiler: furnace water walls and super heaters.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
... is higher than in subcritical units. Because of this, the furnace tubes act more as superheaters than as water-walls. This necessitates the use of a higher grade of materials, such as the high-alloy steels, in the furnace. In turn, materials having higher creep strength and greater oxidation and corrosion...
Abstract
Failures in boilers and other equipment taking place in power plants that use steam as the working fluid are discussed in this article. The discussion is mainly concerned with failures in Rankine cycle systems that use fossil fuels as the primary heat source. The general procedure and techniques followed in failure investigation of boilers and related equipment are discussed. The article is framed with an objective to provide systematic information on various damage mechanisms leading to the failure of boiler tubes, headers, and drums, supplemented by representative case studies for a greater understanding of the respective damage mechanism.
Image
Published: 15 January 2021
Fig. 17 Appearance of fireside surface after removing ash deposits from a superheater/reheater tube experiencing coal-ash corrosion. Circumferential grooves are referred to as “alligator hide.” Source: Ref 65 . Courtesy of D.N. French
More
Image
Published: 01 January 2003
Fig. 2 Comparison of weight-loss data from electrochemical measurements in molten slag. Weight loss is from test coupons. SmartCET is a real-time corrosion-monitoring system (InterCorr International, Inc.). Field measurements were made on the fireside of a coal fueled boiler. Source: Ref 1
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... to operate at 760 °C (1400 °F) for economically sustained time periods. Material-related failures in steam generators occur due to internal oxidation and corrosion, fireside corrosion, oxidation and erosion, inadequate welding procedures and fabrication techniques, and inadequate material properties (long...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... salts are often involved in sulfidation, chloridation, and hot corrosion, as discussed previously. The type of environment and the component metal temperatures are important factors in the promotion of fireside or external corrosion in tube steels in boilers. The corrosiveness of the environment depends...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Image
Published: 01 January 2005
reduced. Rapid heating is indicated by the extensive tube bulging and the thinned edges of the open fracture. Such tube failures are commonly the result of boiler upset conditions, including partial or total tube plugging, insufficient flow of coolant, or excessive fireside conditions (flame impingement
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004133
EISBN: 978-1-62708-184-9
..., weldability, fireside corrosion resistance, and steamside corrosion resistance. Ferritic steels are preferred due to their thermal fatigue resistance. However, high-temperature creep strength currently limits these alloys to 620 °C (650 °C theoretical limit). Fireside corrosion resistance further limits...
Abstract
This article describes the control of water chemistry in the steam cycle of a power plant for achieving corrosion control, deposition prevention, and higher cycle efficiency. It discusses the materials requirements of the components exposed to supercritical water in supercritical (SC) and ultrasupercritical (USC) power plants. These components include high-pressure steam piping and headers, superheater and reheater tubing, water wall tubing in the boiler, high-and intermediate-pressure rotors, rotating blades, and bolts in the turbine section. The article reviews the boiler alloys, used in SC and USC boilers, such as ferritic steels, austenitic steels, and nickel-base alloys. It provides information on the materials used in turbine applications such as ferritic rotor steels, turbine blade alloys, and bolting materials. The article explains various factors influencing steamside corrosion in SC power plants. It also deals with the role of overall efficiency in the USC power generation.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003609
EISBN: 978-1-62708-182-5
... Abstract This article discusses two general mechanisms of corrosion in molten salts. One is the metal dissolution caused by the solubility of the metal in the melt. The second and most common mechanism is the oxidation of the metal to ions. Specific examples of the types of corrosion expected...
Abstract
This article discusses two general mechanisms of corrosion in molten salts. One is the metal dissolution caused by the solubility of the metal in the melt. The second and most common mechanism is the oxidation of the metal to ions. Specific examples of the types of corrosion expected for the different metal-fused salt systems are also provided. The metal-fused salt systems include molten fluorides, chloride salts, molten nitrates, molten sulfates, hydroxide melts, and carbonate melts. The article concludes with information on prevention of molten salt corrosion.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... as applicable), the structure or component is designed without a specified life. At relatively low homologous temperatures, service life becomes a concern only if the material is subjected to damage mechanisms in service that reduce its ability to carry the load, such as: Corrosion Fatigue damage from...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... from corrosion, including coating degradation, is excessive. Grain-boundary attack and/or pitting by oxidation/hot corrosion is excessive. Foreign object damage is severe. Destructive sampling and testing indicate life exhaustion. Excessive deformation has occurred due to creep, causing...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003806
EISBN: 978-1-62708-183-2
... Abstract Low-alloy steels are used in a broad spectrum of applications. In some cases, corrosion resistance is a major factor in alloy selection; in other applications, it is only a minor consideration. This article reviews the applications of alloy steel products in four major industries...
Abstract
Low-alloy steels are used in a broad spectrum of applications. In some cases, corrosion resistance is a major factor in alloy selection; in other applications, it is only a minor consideration. This article reviews the applications of alloy steel products in four major industries, namely, oil and gas production, energy conversion systems, marine applications, and chemical processing. Emphasis is placed on the corrosion characteristics of the products, which are used in various applications of each industry.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004211
EISBN: 978-1-62708-184-9
... Abstract This article presents the primary considerations and mechanisms for corrosion and explains how they are involved in the selection of materials for process equipment in refineries and petrochemical plants. It discusses the material selection criteria for a number of ferrous...
Abstract
This article presents the primary considerations and mechanisms for corrosion and explains how they are involved in the selection of materials for process equipment in refineries and petrochemical plants. It discusses the material selection criteria for a number of ferrous and nonferrous alloys used in petroleum refining and petrochemical applications. The article reviews the mechanical properties, fabricability, and corrosion resistance of refinery steels. It describes low- and high-temperature corrosion, hydrogen embrittlement, and cracking such as stress-corrosion, sulfide stress, and stress-oriented hydrogen-induced cracking. The article considers hydrogen attack, corrosion fatigue, and liquid metal embrittlement and the methods of combating them. It explains the causes of velocity-accelerated corrosion and erosion-corrosion. The article summarizes some corrective measures that can be implemented to control corrosion. The applicable standards for materials used in corrosive service conditions in upstream and downstream petroleum service are presented in a tabular form.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004190
EISBN: 978-1-62708-184-9
... Abstract This article discusses the methods of pulp production, pulp processing, pulp bleaching, and paper manufacturing. It describes various types of digesters, their construction materials, the corrosion problems encountered, and methods to protect these digesters from corrosion. The article...
Abstract
This article discusses the methods of pulp production, pulp processing, pulp bleaching, and paper manufacturing. It describes various types of digesters, their construction materials, the corrosion problems encountered, and methods to protect these digesters from corrosion. The article examines the corrosion problems in high-yield mechanical pulping, sulfite process, neutral sulfite semichemical pulping, chemical recovery, tall oil plants, wastewater treatment, and recovery boilers. It explains the stages of chlorine-based and nonchlorine bleaching, process water reuse for elemental chlorine-free and nonchlorine bleaching stages, selection of material for bleaching equipment, developments in oxygen bleaching, and the use of highly corrosion-resistant materials for bleach plant equipment. The article reviews the materials used in the construction of paper machine components and specific corrosion problems that affect them. It discusses the composition and corrosive nature of white water. The article also addresses the corrosion and chemical recovery associated with kraft pulping liquors.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
... a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion...
Abstract
Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.
1