1-20 of 195 Search Results for

finite-life criterion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... fluctuations. This article begins with an overview of fatigue properties and design life. This is followed by a description of the two approaches to fatigue, namely infinite-life criterion and finite-life criterion, along with information on damage tolerance criterion. The article then discusses...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002350
EISBN: 978-1-62708-193-1
.... These include infinite-life criterion, finite-life criterion, and damage tolerant criterion. The article describes the individual property requirements of these approaches. It also presents selected examples of properties that reflect some detail of these approaches. damage tolerant criterion fatigue...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003313
EISBN: 978-1-62708-176-4
... combinations. The Goodman line represents an unconnected 10 6 estimate at 50% failure (criterion: separation). Fig. 3 A constant-life diagram for alloy steels that provides combined axes for more ready interpretation. Note the presence of safe-life, finite-life lines on this plot. This diagram...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003380
EISBN: 978-1-62708-195-5
... the characterization and analysis of delamination. The article also reviews the prediction of delamination factors, such as flexbeam fatigue life, and skin/stiffener pull-off strength and life. composite materials fracture failure mode composite delamination opening shearing mode in-plane shearing mode...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003291
EISBN: 978-1-62708-176-4
... Distribution of normalized thermal stresses in a pressurized tube with a ratio of inner radius, R i , to outer radius, R o , of 0.6 and with a temperature gradient of 50 °C (90 °F) under external heating Comparison of Life Predictions By Different Effective Stress Criterion Figure 5 contains...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005519
EISBN: 978-1-62708-197-9
... of the extremely long life of PCD, it is impractical to conduct experiments to wear out a tool. This makes simulation an interesting alternative. Figure 10 shows a finite-element model of a workpiece at the end of a face mill cut. Simulations were run using zero rake and high-positive (20°) rake tools...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... ), and part diameter ( K d ) for fatigue life of steel parts. See text. Finite-Life Criterion (ε-<italic>N</italic> Curves) Strain life is the general approach employed for continuum response in the safe-life, finite-life regime. It is primarily intended to address the low-cycle fatigue area (e.g...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005431
EISBN: 978-1-62708-196-2
... Abstract Several methods are developed for the numerical solution of partial differential equations, namely, meshed-solution methods such as the finite-element method (FEM), finite-difference method, and boundary-element method; and numerical algorithms consisting of so-called meshed-solution...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002476
EISBN: 978-1-62708-194-8
... for tensile strength. It reviews life prediction reliability models used for predicting the life of a component with complex geometry and loading. The article outlines reliability algorithms and presents several applications to illustrate the utilization of these reliability algorithms in structural...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005531
EISBN: 978-1-62708-197-9
... in the material. A failure or defect criterion for linearly elastic material would simply be the yield strength. In more extensive applications, stress analysis from FEA can be used in conjunction with crack propagation data for the material to estimate fatigue life of a part or tooling component. Examples...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006803
EISBN: 978-1-62708-329-4
... Abstract This article provides an outline of the issues to consider in performing a probabilistic life assessment. It begins with an historical background and introduces the most common methods. The article then describes those methods covering subjects such as the required random variable...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002469
EISBN: 978-1-62708-194-8
... in Fatigue and Fracture, Volume 19 of ASM Handbook ( Ref 1 ). This article reviews “traditional” methods of fatigue design. In recent years, the fracture mechanics approach to crack propagation has gained acceptance in the prediction of fatigue life. In this approach, crack initiation is neglected...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... Abstract Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002366
EISBN: 978-1-62708-193-1
...′ f are the coefficients in a pure torsion strain-life relation analogous to the right-hand side of the uniaxial equivalent form in Eq 11 . Both LCF and HCF (finite life) regimes are addressed. Correlation Based on Cyclic Hysteresis Energy Another method correlates cyclic hysteresis energy...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005528
EISBN: 978-1-62708-197-9
... generation, and tool life. An optical micrograph of the cut surface from these processes is shown in Fig. 1(b) , while the sheet cut-edge profile is schematically shown in Fig. 1(c) . In general, a few characteristic zones can be distinctly identified in these surfaces. They are: Rollover zone...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003257
EISBN: 978-1-62708-176-4
... may also include additional criteria such as minimum weight, minimum life cycle cost, environmental responsibility, human factors, and product safety and reliability. This article introduces the basic concepts of mechanical design and its general relation with the properties derived from...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002393
EISBN: 978-1-62708-193-1
... approach, which became known as the “Safe-Life” method. (See the section “Structural Design Philosophies” in this article.) This approach, used in the development of USAF aircraft in the 1960s, involved analysis and testing to four times the anticipated service life. On the commercial scene, another...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003386
EISBN: 978-1-62708-195-5
... design goal is to have an inspection interval equal to the desired life of the aircraft. However, if this is not achievable due to an increase in the severity of usage or analytical errors, the aircraft can be operated safely for an extended period of time with the imposition of periodic inspections...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002472
EISBN: 978-1-62708-194-8
... in severe loss in fatigue life, this is an appropriate failure criterion rather than rupture life. Gas turbine blades may therefore be designed on the basis of time to 0.5% creep with a suitable safety factor on stress. Damage Accumulation and Life Prediction Engineering procedures for life...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009154
EISBN: 978-1-62708-186-3
... thickness of 4 mm (0.2 in.) Materials with high tensile strength, R m up to 1000 MPa (145 ksi), can be joined Process can be monitored in real-time for quality control Can also join unweldable and dissimilar material combinations Increased fatigue life compared to spot-welded joints...