Skip Nav Destination
Close Modal
Search Results for
finishing fluids
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 845
Search Results for finishing fluids
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001240
EISBN: 978-1-62708-170-2
... as recommended by the federal Environmental Protection Agency (EPA) and Resource Conservation and Recovery Act (RCRA) regulations. This article explains the selection considerations of such fluids, as well as the applications and environmental issues related to the grinding processes. finishing finishing...
Abstract
Grinding is an extremely complex process that requires the consideration of a number of elements in order to make a reasonably adroit initial selection of a fluid or fluids for a manufacturing plant. In addition, the disposal of grinding wastes must meet the minimum requirements as recommended by the federal Environmental Protection Agency (EPA) and Resource Conservation and Recovery Act (RCRA) regulations. This article explains the selection considerations of such fluids, as well as the applications and environmental issues related to the grinding processes.
Image
Published: 01 January 1989
Fig. 15 Setup involving the use of cutting fluid under pressure for improved finish and dimensional accuracy in drilling and boring a press platen. Dimensions in figure given in inches
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001230
EISBN: 978-1-62708-170-2
... of thermal interactions and their control is critical for any successful use of finishing methods. “Selection, Application, and Disposal of Finishing Fluids.” All finishing methods are carried out in the presence of an environment. Air or ambient conditions may be most common in dry finishing methods...
Abstract
This article focuses on the various technology drivers for finishing methods, namely, tolerance, consistency, surface quality, and productivity. Every finishing method may be viewed as a manufacturing system consisting of four input categories: machine tool, processing tool, work material, and operational factors. The article provides a classification of finishing as a surface generation process and addresses the characteristics of the generated surfaces and the methods used to measure them. It describes the thermomechanical interactions occurring between the processing tool and the work material in the presence of machine tool and operational factors.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006517
EISBN: 978-1-62708-207-5
... Abstract Mechanical finishes usually can be applied to aluminum using the same equipment used for other metals. This article describes the two types of grinding used in mechanical finishing: abrasive belt grinding and abrasive wheel grinding. It reviews the binders and fluid carriers used...
Abstract
Mechanical finishes usually can be applied to aluminum using the same equipment used for other metals. This article describes the two types of grinding used in mechanical finishing: abrasive belt grinding and abrasive wheel grinding. It reviews the binders and fluid carriers used in buffing, and discusses satin finishing and barrel finishing. It also describes lapping and honing techniques that are of special interest in treating aluminum parts that have received hard anodic coatings. Honing recommendations for aluminum alloys are presented in a table.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002143
EISBN: 978-1-62708-188-7
... that influence thread quality, production rate, and cost in die threading are composition and hardness of work metal; accuracy and finish; thread size; obstacles, such as shoulders or steps; speed; lead control; and cutting fluid. The article examines these factors and describes the tools and cutting fluids used...
Abstract
This article discusses the types and operations of the most common machines used for die threading. The construction, types, and comparison of solid and self-opening dies are discussed. The article explains the modification of chasers for threading Monel shaft. The principal factors that influence thread quality, production rate, and cost in die threading are composition and hardness of work metal; accuracy and finish; thread size; obstacles, such as shoulders or steps; speed; lead control; and cutting fluid. The article examines these factors and describes the tools and cutting fluids used for pipe threading along with the severity of stop lines.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001033
EISBN: 978-1-62708-161-0
... Abstract The machinability of carbon and alloy steels is affected by many factors, such as the composition, microstructure, and strength level of the steel; the feeds, speeds, and depth of cut; and the choice of cutting fluid and cutting tool material. This article describes the influence...
Abstract
The machinability of carbon and alloy steels is affected by many factors, such as the composition, microstructure, and strength level of the steel; the feeds, speeds, and depth of cut; and the choice of cutting fluid and cutting tool material. This article describes the influence of the various attributes of carbon and alloy steels on machining characteristics. It lists the relative machinability ratings for some plain carbon steels, standard resulfurized steels, and several alloy steels. The addition of lead to carbon steels is one of the means of increasing the machinability of the steel and improving the surface finish of machined parts. Low carbon content of carburizing steels may be beneficial to tool life and production rate. The sulfur content of through-hardening alloy steels can significantly affect machining behavior. Cold drawing generally improves the machinability of steels containing less than about 0.2% carbon.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004012
EISBN: 978-1-62708-185-6
... affecting die life and explains the effect of thread form on processing. It provides information on various fluids used in thread rolling to cool the dies and the work and to improve the finish on the rolled products. The article provides a comparison between thread rolling and cutting, as well as between...
Abstract
Thread rolling is a cold-forming process for producing threads or other helical or annular forms by rolling the impression of hardened steel dies into the surface of a cylindrical or conical blank. Methods that use cylindrical dies are classified as radial infeed, tangential feed, through feed, planetary, and internal. This article focuses on the capabilities, limitations, and machines used for these methods. It describes the three characteristics, such as rollability, flaking, and seaming, used in evaluating and selecting metals for thread rolling. The article explores the factors affecting die life and explains the effect of thread form on processing. It provides information on various fluids used in thread rolling to cool the dies and the work and to improve the finish on the rolled products. The article provides a comparison between thread rolling and cutting, as well as between thread rolling and grinding.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002129
EISBN: 978-1-62708-188-7
... the size and configuration of the workpiece, equipment capacity, production quantity, dimensional accuracy, number of operations, and the surface finish. It presents examples that describe or compare equipment and techniques for production applications. Finally, the article provides a discussion...
Abstract
Turning is a machining process for generating external surfaces of revolution by the action of a cutting tool on a rotating workpiece, usually in a lathe. This article discusses the process capabilities of turning over other machining operations and describes the classification, controlling methods, attachments, and accessories of a lathe machine. It reviews the design and various operations of single-point cutting tools in turning. In addition, the article discusses the influence of various factors on selection of equipment and machining procedure for a specific part. These include the size and configuration of the workpiece, equipment capacity, production quantity, dimensional accuracy, number of operations, and the surface finish. It presents examples that describe or compare equipment and techniques for production applications. Finally, the article provides a discussion on the classification and compatibility of cutting fluids.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002142
EISBN: 978-1-62708-188-7
... rolling, planetary thread rolling, continuous rolling, and internal thread rolling, as well as the rolling machines and dies used. The article describes the factors affecting die life and provides information on radial die load, seam formation, surface finish, and thread dimensions that are affected...
Abstract
This article discusses the three characteristics that are important in evaluating and selecting metals for thread rolling, namely, rollability, flaking, and seaming. It reviews the capabilities and limitations of flat-die rolling, radial-infeed rolling, tangential rolling, through-feed rolling, planetary thread rolling, continuous rolling, and internal thread rolling, as well as the rolling machines and dies used. The article describes the factors affecting die life and provides information on radial die load, seam formation, surface finish, and thread dimensions that are affected by the form of the thread. It explains the reasons for using fluids in thread rolling. The article concludes with a comparison of rolling with cutting and grinding.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003193
EISBN: 978-1-62708-199-3
... for grinding and grinding wheels. abrasive belt abrasives bonding finish grinding fluids grinding processes grinding recommendations grinding wheel metal bonds resin bonds tolerance truing vitrified bonds IN ALL GRINDING OPERATIONS, material is removed from the workpiece...
Abstract
In all grinding operations, care must be used in the selection of wheels and abrasive belts to meet finish and tolerance requirements without damaging the workpiece. This article discusses the major aspects of the grinding wheel, including production methods, selection considerations, standard marking systems, abrasives, and bonding types. It compares bonded wheel grinding with abrasive belt grinding. The article reviews the types of grinding fluids and discusses their importance in grinding operations. It describes the specific grinding processes and provides recommendations for grinding and grinding wheels.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002186
EISBN: 978-1-62708-188-7
... The improved surface finish and increased tool life that cutting fluids provide for many metals can be minor considerations in most machining operations on magnesium. Smooth surfaces are produced by machining at high or low speeds, with or without a cutting fluid. If required, such fluids are mainly used...
Abstract
Magnesium is machined in low-volume production on small, manually operated machine tools and on large, specially built, completely automated transfer machines operating at high production rates. This article focuses on the factors that affect the machining of magnesium. It discusses chip formation and distortion due to thermal expansion, cold work, and clamping and provides information on magnesium-matrix composites. The article describes materials, design, and sharpness as factors for selection of tool for machining magnesium. It illustrates turning and boring, planing and shaping, broaching, drilling, reaming, counterboring, milling, sawing, and grinding operations performed on magnesium. Safety measures related to machining, handling of chips and fines, and fire extinguishing are also discussed.
Image
Published: 01 January 1989
(in.) 6.3 (0.250) Depth of finishing cut, mm (in.) 0.38 (0.015) Cutting fluid None Tool material Carbide Setup time, man-hours 2 Downtime for changing tools, min 6 Machining time, min/piece 27 Tool life, pieces/grind 50
More
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002166
EISBN: 978-1-62708-188-7
... and the dielectric fluid are similar to those used in electrical discharge machining, but lower amperage is used in most EDG applications because the method usually involves a smaller cutting area and is primarily used to achieve higher accuracy and a smoother finish. Fig. 1 Setup for electrical discharge...
Abstract
Electrical discharge grinding (EDG) is much like electrical discharge machining except that the electrode (tool) is a rotating graphite wheel. This article commences with a schematic illustration of a setup for EDG wheels and discusses the control operation of the EDG setup. It tabulates typical applications and conditions for the EDG of stainless steels using 300 mm diameter wheels. The article describes the process characteristics of the EDG in terms of applications, surface finish, corner radius, and wheel wear. It concludes with a graphical illustration of the effect of heat in electrical discharge grinding on the surface hardness of various work metals.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002130
EISBN: 978-1-62708-188-7
... Tolerance specified, mm (in.) +0.000, −0.02 (+0.0000, −0.0008) Finish specified, μm (μin.) 3.20 (125) Operating conditions Speed, at 545 rev/min, m/min (sfm) 137 (450) Feed, mm/rev (in./rev) 0.20 (0.008) Depth of cut, mm (in.) 2.4 (0 to 3 32 ) Cutting fluid Air-mist...
Abstract
Boring is a machining process in which internal diameters are generated in true relation to the centerline of the spindle by means of single-point cutting tools. This article provides a discussion on boring machines and boring tools and presents a comprehensive discussion on the various elements of boring. The elements are composition and hardness of workpiece metal, cutting fluid, speeds and feeds, and methods for piloting and supporting tools in boring applications. The article explains the role of workpiece size in selecting the equipment and processing procedure and the use of techniques to overcome difficulties presented by workpiece configuration. It describes the factors related to accuracy of boring and factors affecting them. The article also presents a discussion on close-tolerance boring and methods of controlling vibration and chatter. It concludes with a section presenting information on the use of boring equipment for machining operations other than boring.
Image
Published: 01 January 1989
) 0.41 (0.016) Depth of roughing cut, mm (in.) 4.75 (0.187) Depth of semifinishing cut, mm (in.) 0.79 (0.031) Depth of finishing cut, mm (in.) 0.13 (0.005) Tool material Roughing and semifinishing Carbide Finishing High-speed steel Cutting fluid Soluble oil Setup time, h
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006494
EISBN: 978-1-62708-207-5
...; germicides Generally low Generous flow at all cutting edges; keep recirculating fluid clean; cool as required Good chip flushing; excellent visibility of cut; excellent cooling; adjustable lubrication; aids good finish Keep oil content low; control mist; consider cost (significantly higher than soluble...
Abstract
The horsepower requirements to cut various metal alloys provide an indication of the relative ease and cost of machining, but several other important factors include cutting tool material, chip formation, cutting fluids, cutting tool wear, surface roughness, and surface integrity. This article reviews these general machining factors as well as specific cutting tool and cutting parameters for the six basic chip-forming processes of turning, shaping, milling, drilling, sawing, and broaching. Best practices for each of the six chip-forming processes are suggested for optimized machining of aluminum alloys. The article lists the inherent disadvantages of machining processes that involve compression/shear chip formation. It discusses the machining of aluminum metal-matrix composites and nontraditional machining of aluminum, such as abrasive jet, waterjet, electrodischarge, plasma arc, electrochemical, and chemical machining.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005124
EISBN: 978-1-62708-186-3
..., AMS 5521 ( Fig. 17a ). Forming the six sections was difficult, and the finished parts were expensive. The rejection rate was also high. Fig. 18 Drawing of a stepped cover by the fluid-cell process. Dimensions given in inches Rubber-diaphragm forming in a Hydroform press was tried...
Abstract
This article focuses on the three basic groups of flexible-die forming methods: rubber pad, fluid cell, and fluid forming. It provides information on the Guerin process, the Verson-Wheelon process, the trapped-rubber process, the Marform process, the Hydroform process, the SAAB process, and the Demarest process. The article provides a discussion on the procedures of these processes, as well as the presses and tools used. It describes the methods of hydraulic forming of thin metal parts, namely, hydraulic forming with diaphragm, hydraulic forming with gasket and pressure control, and hydrobuckling.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003190
EISBN: 978-1-62708-199-3
... Abstract Both surface finish and surface integrity must be defined, measured, and maintained within specified limits in the processing of any product. Surface texture is defined in terms of roughness, waviness, lay, and flaws. This article illustrates some of the designations of surface...
Abstract
Both surface finish and surface integrity must be defined, measured, and maintained within specified limits in the processing of any product. Surface texture is defined in terms of roughness, waviness, lay, and flaws. This article illustrates some of the designations of surface roughness and the symbols for defining lay and its direction. In addition, it describes the applications of surface integrity, typical surface integrity problems created in metal removal operations, and principal causes of surface alterations produced by machining processes. The article tabulates the effect of some machining methods on fatigue strength, and low-stress grinding procedures for steels, nickel-base high-temperature alloys, and titanium alloys.
Image
Published: 01 January 1989
/rev (in./rev) 0.3 (0.012) Depth of roughing cut, mm (in.) 0.90 (0.035) Depth of finishing cut, mm (in.) 0.38 (0.015) Cutting fluid None Production rate, pieces/h 1600 Tool life, pieces/grind 800
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003189
EISBN: 978-1-62708-199-3
... emulsifiable oils and chemical fluids are formulated specifically for grinding operations and are used in concentrations of 1 part concentrate in 25 to 60 parts water. An increase in the richness of emulsifiable oil mixtures from 2.5 to 10% can improve the grinding ratio and the workpiece finish and reduce...
Abstract
Cutting fluids play a major role in increasing productivity and reducing costs by making possible the use of higher cutting speeds, higher feed rates, and greater depths of cut. After listing the functions of cutting fluids, this article then covers the major types, characteristics, advantages and limitations of cutting and grinding fluids, such as cutting oils, water-miscible fluids, gaseous fluids, pastes, and solid lubricants along with their subtypes. It discusses the factors considered during the selection of cutting fluid, focusing on machinability (or grindability) of the material, compatibility (metallurgical, chemical, and human), and acceptability (fluid properties, reliability, and stability). The article also describes various application methods of cutting fluids and precautions that should be observed by the operator.
1