1-20 of 209 Search Results for

filtration

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005351
EISBN: 978-1-62708-187-0
...Abstract Abstract In the handling of molten aluminum, it is fairly common to use filters as a part of the melting unit and in the gating and/or riser system. This article describes the methods of in-furnace and in-mold filtration, with an emphasis on the filtration of molten aluminum...
Image
Published: 01 December 2008
Fig. 3 Two modes of positive filtration. (a) Depth filtration. (b) Cake filtration More
Image
Published: 01 December 2008
Fig. 14 Several common filtration and flow modification devices (from left to right): strainer core, extruded ceramic filter, ceramic foam filter, mica screen, and woven fabric screen. The two types of ceramic filters are by far the most widely used. More
Image
Published: 01 December 2008
Fig. 4 Transport and capture mechanisms of depth filtration. (a) Diffusion. (b) Direct interception. (c) Inertia or sedimentation. (d) Fluid dynamics effects on particulate transport More
Image
Published: 01 December 2008
Fig. 22 Porous disc filtration analysis results on 380 die cast alloy. Flux injection in transfer ladle followed by settling and filtration in casting furnace More
Image
Published: 01 December 2008
Fig. 14 Typical pressure filtration curves representing metal cleanliness values as a function of different fluxing treatments. Dirtiest molten metal is given by curve 5 (rotary degassing without any flux usage). Cleanest metal is given by curve 8 (rotary flux injection). More
Image
Published: 30 September 2015
Fig. 9 Example of porous 316L SS tube assemblies for filtration or for sparging of fine bubbles in gas/liquid contacting applications More
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006134
EISBN: 978-1-62708-175-7
... employed. composites fabrication material selection porous powder metallurgy THE TECHNOLOGY TO FABRICATE lower-density, porous powdered metal (PM) materials provides unique engineering solutions for many applications, such as filtration, fluid flow control, flame arresting, fluidization, self...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005923
EISBN: 978-1-62708-166-5
... describes flow measurement methods, temperature control, materials handling, and filtration processes during the agitation process. The maintenance of quenching installations is also discussed. agitators computational fluid dynamics fixtures quench tank design quenchants quenching safety...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006535
EISBN: 978-1-62708-207-5
... fluxes, drossing fluxes, cleaning fluxes, and furnace wall cleaner fluxes. The article reviews the basic considerations in proper flux selection and fluxing practices. It explains the basic principles of degassing and discusses the degassing of wrought aluminum alloys. The article describes filtration...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003052
EISBN: 978-1-62708-200-6
...-phase reactions, filtration and washing, and powder recovery techniques. It concludes with a discussion on characterization, centering on size distribution analysis, specific surface area, density, porosity chemical composition, phase, and surface composition. ceramic powders ceramic processing...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005303
EISBN: 978-1-62708-187-0
..., deoxidation, grain refining, and filtration. The article provides a discussion on these melt treatments for group I to III alloys. It describes the three categories of furnaces for melting copper casting alloys: crucible furnaces, open-flame furnaces, and induction furnaces. The article explains the important...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005352
EISBN: 978-1-62708-187-0
...Abstract Abstract This article discusses various molten-metal treatments, namely fluxing, degassing, and molten-metal filtration. It focuses on various molten-metal handling systems for transporting, holding, or delivering molten metal to the mold/die system. These include launders, tundishes...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006099
EISBN: 978-1-62708-175-7
...Abstract Abstract This article provides information on the infiltration mechanism of carbide structures. It reviews the basic techniques used for metal infiltration, including dip infiltration, contact filtration, gravity feed infiltration, and external-pressure infiltration. The article...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006455
EISBN: 978-1-62708-190-0
... for the radiography of plates, cylinders, and flanges. The article discusses various control methods, including the use of lead screens; protection against backscatter and scatter from external objects; and the use of masks, diaphragms, collimators, and filtration. The radiographic appearance of specific types...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006448
EISBN: 978-1-62708-190-0
... radiation: use of lead screens; protection against backscatter and scatter from external objects; and use of masks, diaphragms, collimators, and filtration. The article concludes with a discussion on image conversion media, including recording media, lead screens, lead oxide screens, and fluorescent...
Image
Published: 01 January 1996
Fig. 1 Two stainless steels fabricated by P/M, as demonstrations of the microstructure variations possible by tailoring the powder, compaction, and sintering variables. (a) A high-porosity microstructure useful for filtration, formed by press and sinter. 1000×. (b) A closed-porosity, high-density More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005340
EISBN: 978-1-62708-187-0
... = 100 % ( C i − C o / C i ) where C i and C o are the concentrations of the specific element at inlet of the filter and after filtration, respectively. Detection methods (sample weight ranging from 0.5 to 30 g) based on the above principle and types of impurities...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002128
EISBN: 978-1-62708-188-7
..., concentrated; d, diluted. Source: Ref 4 Fluid Characteristics Oil-base solutions possess superior lubricating characteristics, resist bacterial attack, protect surfaces from corrosion, and can be readily recycled with appropriate filtration. Water-base solutions have superior cooling...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005932
EISBN: 978-1-62708-166-5
... No health hazards Easy scale removal by filtration No environmental hazards associated with water One disadvantage of plain water as a quenchant is that its rapid cooling rate persists throughout the lower temperature range, in which distortion or cracking is likely to occur. Consequently, water...